Integral of (16x+24)sin4xdx dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=4x.
Then let du=4dx and substitute du:
∫(usin(u)+6sin(u))du
-
Integrate term-by-term:
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=sin(u).
Then du(u)=1.
To find v(u):
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−cos(u))du=−∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: −sin(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫6sin(u)du=6∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −6cos(u)
The result is: −ucos(u)+sin(u)−6cos(u)
Now substitute u back in:
−4xcos(4x)+sin(4x)−6cos(4x)
Method #2
-
Rewrite the integrand:
(16x+24)sin(4x)=16xsin(4x)+24sin(4x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫16xsin(4x)dx=16∫xsin(4x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin(4x).
Then du(x)=1.
To find v(x):
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4cos(4x))dx=−4∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: −16sin(4x)
So, the result is: −4xcos(4x)+sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫24sin(4x)dx=24∫sin(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
So, the result is: −6cos(4x)
The result is: −4xcos(4x)+sin(4x)−6cos(4x)
Method #3
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=16x+24 and let dv(x)=sin(4x).
Then du(x)=16.
To find v(x):
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4cos(4x))dx=−4∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: −sin(4x)
Method #4
-
Rewrite the integrand:
(16x+24)sin(4x)=16xsin(4x)+24sin(4x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫16xsin(4x)dx=16∫xsin(4x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin(4x).
Then du(x)=1.
To find v(x):
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4cos(4x))dx=−4∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: −16sin(4x)
So, the result is: −4xcos(4x)+sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫24sin(4x)dx=24∫sin(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
So, the result is: −6cos(4x)
The result is: −4xcos(4x)+sin(4x)−6cos(4x)
-
Add the constant of integration:
−4xcos(4x)+sin(4x)−6cos(4x)+constant
The answer is:
−4xcos(4x)+sin(4x)−6cos(4x)+constant
The answer (Indefinite)
[src]
/
|
| (16*x + 24)*sin(4*x) dx = C - 6*cos(4*x) - 4*x*cos(4*x) + sin(4*x)
|
/
∫(16x+24)sin(4x)dx=C−4xcos(4x)+sin(4x)−6cos(4x)
The graph
sin(4)+6−10cos(4)
=
sin(4)+6−10cos(4)
Use the examples entering the upper and lower limits of integration.