Mister Exam

Integral of sin6xsin4xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  sin(6*x)*sin(4*x) dx
 |                      
/                       
0                       
01sin(4x)sin(6x)dx\int\limits_{0}^{1} \sin{\left(4 x \right)} \sin{\left(6 x \right)}\, dx
Integral(sin(6*x)*sin(4*x), (x, 0, 1))
The graph
0.001.000.100.200.300.400.500.600.700.800.901-1
The answer [src]
  3*cos(6)*sin(4)   cos(4)*sin(6)
- --------------- + -------------
         10               5      
sin(6)cos(4)53sin(4)cos(6)10\frac{\sin{\left(6 \right)} \cos{\left(4 \right)}}{5} - \frac{3 \sin{\left(4 \right)} \cos{\left(6 \right)}}{10}
=
=
  3*cos(6)*sin(4)   cos(4)*sin(6)
- --------------- + -------------
         10               5      
sin(6)cos(4)53sin(4)cos(6)10\frac{\sin{\left(6 \right)} \cos{\left(4 \right)}}{5} - \frac{3 \sin{\left(4 \right)} \cos{\left(6 \right)}}{10}
-3*cos(6)*sin(4)/10 + cos(4)*sin(6)/5
Numerical answer [src]
0.254525412250889
0.254525412250889

    Use the examples entering the upper and lower limits of integration.