Mister Exam

Integral of sin²5x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |     25      
 |  sin  (x) dx
 |             
/              
0              
01sin25(x)dx\int\limits_{0}^{1} \sin^{25}{\left(x \right)}\, dx
Integral(sin(x)^25, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    sin25(x)=(1cos2(x))12sin(x)\sin^{25}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right)^{12} \sin{\left(x \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      (1cos2(x))12sin(x)=sin(x)cos24(x)12sin(x)cos22(x)+66sin(x)cos20(x)220sin(x)cos18(x)+495sin(x)cos16(x)792sin(x)cos14(x)+924sin(x)cos12(x)792sin(x)cos10(x)+495sin(x)cos8(x)220sin(x)cos6(x)+66sin(x)cos4(x)12sin(x)cos2(x)+sin(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{12} \sin{\left(x \right)} = \sin{\left(x \right)} \cos^{24}{\left(x \right)} - 12 \sin{\left(x \right)} \cos^{22}{\left(x \right)} + 66 \sin{\left(x \right)} \cos^{20}{\left(x \right)} - 220 \sin{\left(x \right)} \cos^{18}{\left(x \right)} + 495 \sin{\left(x \right)} \cos^{16}{\left(x \right)} - 792 \sin{\left(x \right)} \cos^{14}{\left(x \right)} + 924 \sin{\left(x \right)} \cos^{12}{\left(x \right)} - 792 \sin{\left(x \right)} \cos^{10}{\left(x \right)} + 495 \sin{\left(x \right)} \cos^{8}{\left(x \right)} - 220 \sin{\left(x \right)} \cos^{6}{\left(x \right)} + 66 \sin{\left(x \right)} \cos^{4}{\left(x \right)} - 12 \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \sin{\left(x \right)}

    2. Integrate term-by-term:

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        (u24)du\int \left(- u^{24}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          u24du=u24du\int u^{24}\, du = - \int u^{24}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u24du=u2525\int u^{24}\, du = \frac{u^{25}}{25}

          So, the result is: u2525- \frac{u^{25}}{25}

        Now substitute uu back in:

        cos25(x)25- \frac{\cos^{25}{\left(x \right)}}{25}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (12sin(x)cos22(x))dx=12sin(x)cos22(x)dx\int \left(- 12 \sin{\left(x \right)} \cos^{22}{\left(x \right)}\right)\, dx = - 12 \int \sin{\left(x \right)} \cos^{22}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u22)du\int \left(- u^{22}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u22du=u22du\int u^{22}\, du = - \int u^{22}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u22du=u2323\int u^{22}\, du = \frac{u^{23}}{23}

            So, the result is: u2323- \frac{u^{23}}{23}

          Now substitute uu back in:

          cos23(x)23- \frac{\cos^{23}{\left(x \right)}}{23}

        So, the result is: 12cos23(x)23\frac{12 \cos^{23}{\left(x \right)}}{23}

      1. The integral of a constant times a function is the constant times the integral of the function:

        66sin(x)cos20(x)dx=66sin(x)cos20(x)dx\int 66 \sin{\left(x \right)} \cos^{20}{\left(x \right)}\, dx = 66 \int \sin{\left(x \right)} \cos^{20}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u20)du\int \left(- u^{20}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u20du=u20du\int u^{20}\, du = - \int u^{20}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u20du=u2121\int u^{20}\, du = \frac{u^{21}}{21}

            So, the result is: u2121- \frac{u^{21}}{21}

          Now substitute uu back in:

          cos21(x)21- \frac{\cos^{21}{\left(x \right)}}{21}

        So, the result is: 22cos21(x)7- \frac{22 \cos^{21}{\left(x \right)}}{7}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (220sin(x)cos18(x))dx=220sin(x)cos18(x)dx\int \left(- 220 \sin{\left(x \right)} \cos^{18}{\left(x \right)}\right)\, dx = - 220 \int \sin{\left(x \right)} \cos^{18}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u18)du\int \left(- u^{18}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u18du=u18du\int u^{18}\, du = - \int u^{18}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u18du=u1919\int u^{18}\, du = \frac{u^{19}}{19}

            So, the result is: u1919- \frac{u^{19}}{19}

          Now substitute uu back in:

          cos19(x)19- \frac{\cos^{19}{\left(x \right)}}{19}

        So, the result is: 220cos19(x)19\frac{220 \cos^{19}{\left(x \right)}}{19}

      1. The integral of a constant times a function is the constant times the integral of the function:

        495sin(x)cos16(x)dx=495sin(x)cos16(x)dx\int 495 \sin{\left(x \right)} \cos^{16}{\left(x \right)}\, dx = 495 \int \sin{\left(x \right)} \cos^{16}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u16)du\int \left(- u^{16}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u16du=u16du\int u^{16}\, du = - \int u^{16}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u16du=u1717\int u^{16}\, du = \frac{u^{17}}{17}

            So, the result is: u1717- \frac{u^{17}}{17}

          Now substitute uu back in:

          cos17(x)17- \frac{\cos^{17}{\left(x \right)}}{17}

        So, the result is: 495cos17(x)17- \frac{495 \cos^{17}{\left(x \right)}}{17}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (792sin(x)cos14(x))dx=792sin(x)cos14(x)dx\int \left(- 792 \sin{\left(x \right)} \cos^{14}{\left(x \right)}\right)\, dx = - 792 \int \sin{\left(x \right)} \cos^{14}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u14)du\int \left(- u^{14}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u14du=u14du\int u^{14}\, du = - \int u^{14}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u14du=u1515\int u^{14}\, du = \frac{u^{15}}{15}

            So, the result is: u1515- \frac{u^{15}}{15}

          Now substitute uu back in:

          cos15(x)15- \frac{\cos^{15}{\left(x \right)}}{15}

        So, the result is: 264cos15(x)5\frac{264 \cos^{15}{\left(x \right)}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        924sin(x)cos12(x)dx=924sin(x)cos12(x)dx\int 924 \sin{\left(x \right)} \cos^{12}{\left(x \right)}\, dx = 924 \int \sin{\left(x \right)} \cos^{12}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u12)du\int \left(- u^{12}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u12du=u12du\int u^{12}\, du = - \int u^{12}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u12du=u1313\int u^{12}\, du = \frac{u^{13}}{13}

            So, the result is: u1313- \frac{u^{13}}{13}

          Now substitute uu back in:

          cos13(x)13- \frac{\cos^{13}{\left(x \right)}}{13}

        So, the result is: 924cos13(x)13- \frac{924 \cos^{13}{\left(x \right)}}{13}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (792sin(x)cos10(x))dx=792sin(x)cos10(x)dx\int \left(- 792 \sin{\left(x \right)} \cos^{10}{\left(x \right)}\right)\, dx = - 792 \int \sin{\left(x \right)} \cos^{10}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u10)du\int \left(- u^{10}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u10du=u10du\int u^{10}\, du = - \int u^{10}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u10du=u1111\int u^{10}\, du = \frac{u^{11}}{11}

            So, the result is: u1111- \frac{u^{11}}{11}

          Now substitute uu back in:

          cos11(x)11- \frac{\cos^{11}{\left(x \right)}}{11}

        So, the result is: 72cos11(x)72 \cos^{11}{\left(x \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        495sin(x)cos8(x)dx=495sin(x)cos8(x)dx\int 495 \sin{\left(x \right)} \cos^{8}{\left(x \right)}\, dx = 495 \int \sin{\left(x \right)} \cos^{8}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u8)du\int \left(- u^{8}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u8du=u8du\int u^{8}\, du = - \int u^{8}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

            So, the result is: u99- \frac{u^{9}}{9}

          Now substitute uu back in:

          cos9(x)9- \frac{\cos^{9}{\left(x \right)}}{9}

        So, the result is: 55cos9(x)- 55 \cos^{9}{\left(x \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (220sin(x)cos6(x))dx=220sin(x)cos6(x)dx\int \left(- 220 \sin{\left(x \right)} \cos^{6}{\left(x \right)}\right)\, dx = - 220 \int \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u6)du\int \left(- u^{6}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u6du=u6du\int u^{6}\, du = - \int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            So, the result is: u77- \frac{u^{7}}{7}

          Now substitute uu back in:

          cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

        So, the result is: 220cos7(x)7\frac{220 \cos^{7}{\left(x \right)}}{7}

      1. The integral of a constant times a function is the constant times the integral of the function:

        66sin(x)cos4(x)dx=66sin(x)cos4(x)dx\int 66 \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx = 66 \int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u4)du\int \left(- u^{4}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u4du=u4du\int u^{4}\, du = - \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: u55- \frac{u^{5}}{5}

          Now substitute uu back in:

          cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

        So, the result is: 66cos5(x)5- \frac{66 \cos^{5}{\left(x \right)}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (12sin(x)cos2(x))dx=12sin(x)cos2(x)dx\int \left(- 12 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 12 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u2)du\int \left(- u^{2}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u2du=u2du\int u^{2}\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          Now substitute uu back in:

          cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

        So, the result is: 4cos3(x)4 \cos^{3}{\left(x \right)}

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      The result is: cos25(x)25+12cos23(x)2322cos21(x)7+220cos19(x)19495cos17(x)17+264cos15(x)5924cos13(x)13+72cos11(x)55cos9(x)+220cos7(x)766cos5(x)5+4cos3(x)cos(x)- \frac{\cos^{25}{\left(x \right)}}{25} + \frac{12 \cos^{23}{\left(x \right)}}{23} - \frac{22 \cos^{21}{\left(x \right)}}{7} + \frac{220 \cos^{19}{\left(x \right)}}{19} - \frac{495 \cos^{17}{\left(x \right)}}{17} + \frac{264 \cos^{15}{\left(x \right)}}{5} - \frac{924 \cos^{13}{\left(x \right)}}{13} + 72 \cos^{11}{\left(x \right)} - 55 \cos^{9}{\left(x \right)} + \frac{220 \cos^{7}{\left(x \right)}}{7} - \frac{66 \cos^{5}{\left(x \right)}}{5} + 4 \cos^{3}{\left(x \right)} - \cos{\left(x \right)}

    Method #2

    1. Rewrite the integrand:

      (1cos2(x))12sin(x)=sin(x)cos24(x)12sin(x)cos22(x)+66sin(x)cos20(x)220sin(x)cos18(x)+495sin(x)cos16(x)792sin(x)cos14(x)+924sin(x)cos12(x)792sin(x)cos10(x)+495sin(x)cos8(x)220sin(x)cos6(x)+66sin(x)cos4(x)12sin(x)cos2(x)+sin(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{12} \sin{\left(x \right)} = \sin{\left(x \right)} \cos^{24}{\left(x \right)} - 12 \sin{\left(x \right)} \cos^{22}{\left(x \right)} + 66 \sin{\left(x \right)} \cos^{20}{\left(x \right)} - 220 \sin{\left(x \right)} \cos^{18}{\left(x \right)} + 495 \sin{\left(x \right)} \cos^{16}{\left(x \right)} - 792 \sin{\left(x \right)} \cos^{14}{\left(x \right)} + 924 \sin{\left(x \right)} \cos^{12}{\left(x \right)} - 792 \sin{\left(x \right)} \cos^{10}{\left(x \right)} + 495 \sin{\left(x \right)} \cos^{8}{\left(x \right)} - 220 \sin{\left(x \right)} \cos^{6}{\left(x \right)} + 66 \sin{\left(x \right)} \cos^{4}{\left(x \right)} - 12 \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \sin{\left(x \right)}

    2. Integrate term-by-term:

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        (u24)du\int \left(- u^{24}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          u24du=u24du\int u^{24}\, du = - \int u^{24}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u24du=u2525\int u^{24}\, du = \frac{u^{25}}{25}

          So, the result is: u2525- \frac{u^{25}}{25}

        Now substitute uu back in:

        cos25(x)25- \frac{\cos^{25}{\left(x \right)}}{25}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (12sin(x)cos22(x))dx=12sin(x)cos22(x)dx\int \left(- 12 \sin{\left(x \right)} \cos^{22}{\left(x \right)}\right)\, dx = - 12 \int \sin{\left(x \right)} \cos^{22}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u22)du\int \left(- u^{22}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u22du=u22du\int u^{22}\, du = - \int u^{22}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u22du=u2323\int u^{22}\, du = \frac{u^{23}}{23}

            So, the result is: u2323- \frac{u^{23}}{23}

          Now substitute uu back in:

          cos23(x)23- \frac{\cos^{23}{\left(x \right)}}{23}

        So, the result is: 12cos23(x)23\frac{12 \cos^{23}{\left(x \right)}}{23}

      1. The integral of a constant times a function is the constant times the integral of the function:

        66sin(x)cos20(x)dx=66sin(x)cos20(x)dx\int 66 \sin{\left(x \right)} \cos^{20}{\left(x \right)}\, dx = 66 \int \sin{\left(x \right)} \cos^{20}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u20)du\int \left(- u^{20}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u20du=u20du\int u^{20}\, du = - \int u^{20}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u20du=u2121\int u^{20}\, du = \frac{u^{21}}{21}

            So, the result is: u2121- \frac{u^{21}}{21}

          Now substitute uu back in:

          cos21(x)21- \frac{\cos^{21}{\left(x \right)}}{21}

        So, the result is: 22cos21(x)7- \frac{22 \cos^{21}{\left(x \right)}}{7}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (220sin(x)cos18(x))dx=220sin(x)cos18(x)dx\int \left(- 220 \sin{\left(x \right)} \cos^{18}{\left(x \right)}\right)\, dx = - 220 \int \sin{\left(x \right)} \cos^{18}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u18)du\int \left(- u^{18}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u18du=u18du\int u^{18}\, du = - \int u^{18}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u18du=u1919\int u^{18}\, du = \frac{u^{19}}{19}

            So, the result is: u1919- \frac{u^{19}}{19}

          Now substitute uu back in:

          cos19(x)19- \frac{\cos^{19}{\left(x \right)}}{19}

        So, the result is: 220cos19(x)19\frac{220 \cos^{19}{\left(x \right)}}{19}

      1. The integral of a constant times a function is the constant times the integral of the function:

        495sin(x)cos16(x)dx=495sin(x)cos16(x)dx\int 495 \sin{\left(x \right)} \cos^{16}{\left(x \right)}\, dx = 495 \int \sin{\left(x \right)} \cos^{16}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u16)du\int \left(- u^{16}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u16du=u16du\int u^{16}\, du = - \int u^{16}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u16du=u1717\int u^{16}\, du = \frac{u^{17}}{17}

            So, the result is: u1717- \frac{u^{17}}{17}

          Now substitute uu back in:

          cos17(x)17- \frac{\cos^{17}{\left(x \right)}}{17}

        So, the result is: 495cos17(x)17- \frac{495 \cos^{17}{\left(x \right)}}{17}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (792sin(x)cos14(x))dx=792sin(x)cos14(x)dx\int \left(- 792 \sin{\left(x \right)} \cos^{14}{\left(x \right)}\right)\, dx = - 792 \int \sin{\left(x \right)} \cos^{14}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u14)du\int \left(- u^{14}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u14du=u14du\int u^{14}\, du = - \int u^{14}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u14du=u1515\int u^{14}\, du = \frac{u^{15}}{15}

            So, the result is: u1515- \frac{u^{15}}{15}

          Now substitute uu back in:

          cos15(x)15- \frac{\cos^{15}{\left(x \right)}}{15}

        So, the result is: 264cos15(x)5\frac{264 \cos^{15}{\left(x \right)}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        924sin(x)cos12(x)dx=924sin(x)cos12(x)dx\int 924 \sin{\left(x \right)} \cos^{12}{\left(x \right)}\, dx = 924 \int \sin{\left(x \right)} \cos^{12}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u12)du\int \left(- u^{12}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u12du=u12du\int u^{12}\, du = - \int u^{12}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u12du=u1313\int u^{12}\, du = \frac{u^{13}}{13}

            So, the result is: u1313- \frac{u^{13}}{13}

          Now substitute uu back in:

          cos13(x)13- \frac{\cos^{13}{\left(x \right)}}{13}

        So, the result is: 924cos13(x)13- \frac{924 \cos^{13}{\left(x \right)}}{13}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (792sin(x)cos10(x))dx=792sin(x)cos10(x)dx\int \left(- 792 \sin{\left(x \right)} \cos^{10}{\left(x \right)}\right)\, dx = - 792 \int \sin{\left(x \right)} \cos^{10}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u10)du\int \left(- u^{10}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u10du=u10du\int u^{10}\, du = - \int u^{10}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u10du=u1111\int u^{10}\, du = \frac{u^{11}}{11}

            So, the result is: u1111- \frac{u^{11}}{11}

          Now substitute uu back in:

          cos11(x)11- \frac{\cos^{11}{\left(x \right)}}{11}

        So, the result is: 72cos11(x)72 \cos^{11}{\left(x \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        495sin(x)cos8(x)dx=495sin(x)cos8(x)dx\int 495 \sin{\left(x \right)} \cos^{8}{\left(x \right)}\, dx = 495 \int \sin{\left(x \right)} \cos^{8}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u8)du\int \left(- u^{8}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u8du=u8du\int u^{8}\, du = - \int u^{8}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

            So, the result is: u99- \frac{u^{9}}{9}

          Now substitute uu back in:

          cos9(x)9- \frac{\cos^{9}{\left(x \right)}}{9}

        So, the result is: 55cos9(x)- 55 \cos^{9}{\left(x \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (220sin(x)cos6(x))dx=220sin(x)cos6(x)dx\int \left(- 220 \sin{\left(x \right)} \cos^{6}{\left(x \right)}\right)\, dx = - 220 \int \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u6)du\int \left(- u^{6}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u6du=u6du\int u^{6}\, du = - \int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            So, the result is: u77- \frac{u^{7}}{7}

          Now substitute uu back in:

          cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

        So, the result is: 220cos7(x)7\frac{220 \cos^{7}{\left(x \right)}}{7}

      1. The integral of a constant times a function is the constant times the integral of the function:

        66sin(x)cos4(x)dx=66sin(x)cos4(x)dx\int 66 \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx = 66 \int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u4)du\int \left(- u^{4}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u4du=u4du\int u^{4}\, du = - \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: u55- \frac{u^{5}}{5}

          Now substitute uu back in:

          cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

        So, the result is: 66cos5(x)5- \frac{66 \cos^{5}{\left(x \right)}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (12sin(x)cos2(x))dx=12sin(x)cos2(x)dx\int \left(- 12 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 12 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          (u2)du\int \left(- u^{2}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            u2du=u2du\int u^{2}\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          Now substitute uu back in:

          cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

        So, the result is: 4cos3(x)4 \cos^{3}{\left(x \right)}

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      The result is: cos25(x)25+12cos23(x)2322cos21(x)7+220cos19(x)19495cos17(x)17+264cos15(x)5924cos13(x)13+72cos11(x)55cos9(x)+220cos7(x)766cos5(x)5+4cos3(x)cos(x)- \frac{\cos^{25}{\left(x \right)}}{25} + \frac{12 \cos^{23}{\left(x \right)}}{23} - \frac{22 \cos^{21}{\left(x \right)}}{7} + \frac{220 \cos^{19}{\left(x \right)}}{19} - \frac{495 \cos^{17}{\left(x \right)}}{17} + \frac{264 \cos^{15}{\left(x \right)}}{5} - \frac{924 \cos^{13}{\left(x \right)}}{13} + 72 \cos^{11}{\left(x \right)} - 55 \cos^{9}{\left(x \right)} + \frac{220 \cos^{7}{\left(x \right)}}{7} - \frac{66 \cos^{5}{\left(x \right)}}{5} + 4 \cos^{3}{\left(x \right)} - \cos{\left(x \right)}

  3. Now simplify:

    (676039cos24(x)+8817900cos22(x)53117350cos20(x)+195695500cos18(x)492116625cos16(x)+892371480cos14(x)1201269300cos12(x)+1216870200cos10(x)929553625cos8(x)+531173500cos6(x)223092870cos4(x)+67603900cos2(x)16900975)cos(x)16900975\frac{\left(- 676039 \cos^{24}{\left(x \right)} + 8817900 \cos^{22}{\left(x \right)} - 53117350 \cos^{20}{\left(x \right)} + 195695500 \cos^{18}{\left(x \right)} - 492116625 \cos^{16}{\left(x \right)} + 892371480 \cos^{14}{\left(x \right)} - 1201269300 \cos^{12}{\left(x \right)} + 1216870200 \cos^{10}{\left(x \right)} - 929553625 \cos^{8}{\left(x \right)} + 531173500 \cos^{6}{\left(x \right)} - 223092870 \cos^{4}{\left(x \right)} + 67603900 \cos^{2}{\left(x \right)} - 16900975\right) \cos{\left(x \right)}}{16900975}

  4. Add the constant of integration:

    (676039cos24(x)+8817900cos22(x)53117350cos20(x)+195695500cos18(x)492116625cos16(x)+892371480cos14(x)1201269300cos12(x)+1216870200cos10(x)929553625cos8(x)+531173500cos6(x)223092870cos4(x)+67603900cos2(x)16900975)cos(x)16900975+constant\frac{\left(- 676039 \cos^{24}{\left(x \right)} + 8817900 \cos^{22}{\left(x \right)} - 53117350 \cos^{20}{\left(x \right)} + 195695500 \cos^{18}{\left(x \right)} - 492116625 \cos^{16}{\left(x \right)} + 892371480 \cos^{14}{\left(x \right)} - 1201269300 \cos^{12}{\left(x \right)} + 1216870200 \cos^{10}{\left(x \right)} - 929553625 \cos^{8}{\left(x \right)} + 531173500 \cos^{6}{\left(x \right)} - 223092870 \cos^{4}{\left(x \right)} + 67603900 \cos^{2}{\left(x \right)} - 16900975\right) \cos{\left(x \right)}}{16900975}+ \mathrm{constant}


The answer is:

(676039cos24(x)+8817900cos22(x)53117350cos20(x)+195695500cos18(x)492116625cos16(x)+892371480cos14(x)1201269300cos12(x)+1216870200cos10(x)929553625cos8(x)+531173500cos6(x)223092870cos4(x)+67603900cos2(x)16900975)cos(x)16900975+constant\frac{\left(- 676039 \cos^{24}{\left(x \right)} + 8817900 \cos^{22}{\left(x \right)} - 53117350 \cos^{20}{\left(x \right)} + 195695500 \cos^{18}{\left(x \right)} - 492116625 \cos^{16}{\left(x \right)} + 892371480 \cos^{14}{\left(x \right)} - 1201269300 \cos^{12}{\left(x \right)} + 1216870200 \cos^{10}{\left(x \right)} - 929553625 \cos^{8}{\left(x \right)} + 531173500 \cos^{6}{\left(x \right)} - 223092870 \cos^{4}{\left(x \right)} + 67603900 \cos^{2}{\left(x \right)} - 16900975\right) \cos{\left(x \right)}}{16900975}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                                                                                                                                             
 |                                                                          13             17            5            21         25            23             7             19             15   
 |    25                            9           3            11      924*cos  (x)   495*cos  (x)   66*cos (x)   22*cos  (x)   cos  (x)   12*cos  (x)   220*cos (x)   220*cos  (x)   264*cos  (x)
 | sin  (x) dx = C - cos(x) - 55*cos (x) + 4*cos (x) + 72*cos  (x) - ------------ - ------------ - ---------- - ----------- - -------- + ----------- + ----------- + ------------ + ------------
 |                                                                        13             17            5             7           25           23            7             19             5      
/                                                                                                                                                                                               
sin25(x)dx=Ccos25(x)25+12cos23(x)2322cos21(x)7+220cos19(x)19495cos17(x)17+264cos15(x)5924cos13(x)13+72cos11(x)55cos9(x)+220cos7(x)766cos5(x)5+4cos3(x)cos(x)\int \sin^{25}{\left(x \right)}\, dx = C - \frac{\cos^{25}{\left(x \right)}}{25} + \frac{12 \cos^{23}{\left(x \right)}}{23} - \frac{22 \cos^{21}{\left(x \right)}}{7} + \frac{220 \cos^{19}{\left(x \right)}}{19} - \frac{495 \cos^{17}{\left(x \right)}}{17} + \frac{264 \cos^{15}{\left(x \right)}}{5} - \frac{924 \cos^{13}{\left(x \right)}}{13} + 72 \cos^{11}{\left(x \right)} - 55 \cos^{9}{\left(x \right)} + \frac{220 \cos^{7}{\left(x \right)}}{7} - \frac{66 \cos^{5}{\left(x \right)}}{5} + 4 \cos^{3}{\left(x \right)} - \cos{\left(x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-0.500.25
The answer [src]
                                                                  13             17            5            21         25            23             7             19             15   
4194304                   9           3            11      924*cos  (1)   495*cos  (1)   66*cos (1)   22*cos  (1)   cos  (1)   12*cos  (1)   220*cos (1)   220*cos  (1)   264*cos  (1)
-------- - cos(1) - 55*cos (1) + 4*cos (1) + 72*cos  (1) - ------------ - ------------ - ---------- - ----------- - -------- + ----------- + ----------- + ------------ + ------------
16900975                                                        13             17            5             7           25           23            7             19             5      
66cos5(1)5cos(1)55cos9(1)924cos13(1)13495cos17(1)1722cos21(1)7cos25(1)25+12cos23(1)23+220cos19(1)19+264cos15(1)5+72cos11(1)+419430416900975+220cos7(1)7+4cos3(1)- \frac{66 \cos^{5}{\left(1 \right)}}{5} - \cos{\left(1 \right)} - 55 \cos^{9}{\left(1 \right)} - \frac{924 \cos^{13}{\left(1 \right)}}{13} - \frac{495 \cos^{17}{\left(1 \right)}}{17} - \frac{22 \cos^{21}{\left(1 \right)}}{7} - \frac{\cos^{25}{\left(1 \right)}}{25} + \frac{12 \cos^{23}{\left(1 \right)}}{23} + \frac{220 \cos^{19}{\left(1 \right)}}{19} + \frac{264 \cos^{15}{\left(1 \right)}}{5} + 72 \cos^{11}{\left(1 \right)} + \frac{4194304}{16900975} + \frac{220 \cos^{7}{\left(1 \right)}}{7} + 4 \cos^{3}{\left(1 \right)}
=
=
                                                                  13             17            5            21         25            23             7             19             15   
4194304                   9           3            11      924*cos  (1)   495*cos  (1)   66*cos (1)   22*cos  (1)   cos  (1)   12*cos  (1)   220*cos (1)   220*cos  (1)   264*cos  (1)
-------- - cos(1) - 55*cos (1) + 4*cos (1) + 72*cos  (1) - ------------ - ------------ - ---------- - ----------- - -------- + ----------- + ----------- + ------------ + ------------
16900975                                                        13             17            5             7           25           23            7             19             5      
66cos5(1)5cos(1)55cos9(1)924cos13(1)13495cos17(1)1722cos21(1)7cos25(1)25+12cos23(1)23+220cos19(1)19+264cos15(1)5+72cos11(1)+419430416900975+220cos7(1)7+4cos3(1)- \frac{66 \cos^{5}{\left(1 \right)}}{5} - \cos{\left(1 \right)} - 55 \cos^{9}{\left(1 \right)} - \frac{924 \cos^{13}{\left(1 \right)}}{13} - \frac{495 \cos^{17}{\left(1 \right)}}{17} - \frac{22 \cos^{21}{\left(1 \right)}}{7} - \frac{\cos^{25}{\left(1 \right)}}{25} + \frac{12 \cos^{23}{\left(1 \right)}}{23} + \frac{220 \cos^{19}{\left(1 \right)}}{19} + \frac{264 \cos^{15}{\left(1 \right)}}{5} + 72 \cos^{11}{\left(1 \right)} + \frac{4194304}{16900975} + \frac{220 \cos^{7}{\left(1 \right)}}{7} + 4 \cos^{3}{\left(1 \right)}
4194304/16900975 - cos(1) - 55*cos(1)^9 + 4*cos(1)^3 + 72*cos(1)^11 - 924*cos(1)^13/13 - 495*cos(1)^17/17 - 66*cos(1)^5/5 - 22*cos(1)^21/7 - cos(1)^25/25 + 12*cos(1)^23/23 + 220*cos(1)^7/7 + 220*cos(1)^19/19 + 264*cos(1)^15/5
Numerical answer [src]
0.000743706011186276
0.000743706011186276
The graph
Integral of sin²5x dx

    Use the examples entering the upper and lower limits of integration.