Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$25 \sin^{24}{\left(x \right)} \cos{\left(x \right)}$$
The second derivative
[src]
23 / 2 2 \
25*sin (x)*\- sin (x) + 24*cos (x)/
$$25 \left(- \sin^{2}{\left(x \right)} + 24 \cos^{2}{\left(x \right)}\right) \sin^{23}{\left(x \right)}$$
The third derivative
[src]
22 / 2 2 \
25*sin (x)*\- 73*sin (x) + 552*cos (x)/*cos(x)
$$25 \left(- 73 \sin^{2}{\left(x \right)} + 552 \cos^{2}{\left(x \right)}\right) \sin^{22}{\left(x \right)} \cos{\left(x \right)}$$