Integral of sin15x dx
The solution
Detail solution
-
Let u=15x.
Then let du=15dx and substitute 15du:
∫15sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=15∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −15cos(u)
Now substitute u back in:
−15cos(15x)
-
Add the constant of integration:
−15cos(15x)+constant
The answer is:
−15cos(15x)+constant
The answer (Indefinite)
[src]
/
| cos(15*x)
| sin(15*x) dx = C - ---------
| 15
/
∫sin(15x)dx=C−15cos(15x)
The graph
1 cos(15)
-- - -------
15 15
151−15cos(15)
=
1 cos(15)
-- - -------
15 15
151−15cos(15)
Use the examples entering the upper and lower limits of integration.