Mister Exam

Derivative of sin15x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(15*x)
sin(15x)\sin{\left(15 x \right)}
sin(15*x)
Detail solution
  1. Let u=15xu = 15 x.

  2. The derivative of sine is cosine:

    ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

  3. Then, apply the chain rule. Multiply by ddx15x\frac{d}{d x} 15 x:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: xx goes to 11

      So, the result is: 1515

    The result of the chain rule is:

    15cos(15x)15 \cos{\left(15 x \right)}


The answer is:

15cos(15x)15 \cos{\left(15 x \right)}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
15*cos(15*x)
15cos(15x)15 \cos{\left(15 x \right)}
The second derivative [src]
-225*sin(15*x)
225sin(15x)- 225 \sin{\left(15 x \right)}
The third derivative [src]
-3375*cos(15*x)
3375cos(15x)- 3375 \cos{\left(15 x \right)}