Mister Exam

Integral of lnt dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  log(t) dt
 |           
/            
0            
01log(t)dt\int\limits_{0}^{1} \log{\left(t \right)}\, dt
Integral(log(t), (t, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(t)=log(t)u{\left(t \right)} = \log{\left(t \right)} and let dv(t)=1\operatorname{dv}{\left(t \right)} = 1.

    Then du(t)=1t\operatorname{du}{\left(t \right)} = \frac{1}{t}.

    To find v(t)v{\left(t \right)}:

    1. The integral of a constant is the constant times the variable of integration:

      1dt=t\int 1\, dt = t

    Now evaluate the sub-integral.

  2. The integral of a constant is the constant times the variable of integration:

    1dt=t\int 1\, dt = t

  3. Now simplify:

    t(log(t)1)t \left(\log{\left(t \right)} - 1\right)

  4. Add the constant of integration:

    t(log(t)1)+constantt \left(\log{\left(t \right)} - 1\right)+ \mathrm{constant}


The answer is:

t(log(t)1)+constantt \left(\log{\left(t \right)} - 1\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            
 |                             
 | log(t) dt = C - t + t*log(t)
 |                             
/                              
log(t)dt=C+tlog(t)t\int \log{\left(t \right)}\, dt = C + t \log{\left(t \right)} - t
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1010
The answer [src]
-1
1-1
=
=
-1
1-1
-1
Numerical answer [src]
-1.0
-1.0
The graph
Integral of lnt dx

    Use the examples entering the upper and lower limits of integration.