Integral of sech^2(x)tanh^5(x) dx
The solution
The answer (Indefinite)
[src]
/
| 2 2 2 2 4
| 2 5 sech (x) sech (x)*tanh (x) sech (x)*tanh (x)
| sech (x)*tanh (x) dx = C - -------- - ----------------- - -----------------
| 6 6 6
/
6tanh6x
The graph
2 2 2 2 2 4 2 2 2 4
sech (3) sech (2) sech (3)*tanh (3) sech (3)*tanh (3) sech (2)*tanh (2) sech (2)*tanh (2)
- -------- + -------- - ----------------- - ----------------- + ----------------- + -----------------
6 6 6 6 6 6
3e24+18e20+45e16+60e12+45e8+18e4+36e20+20e12+6e4−3e36+18e30+45e24+60e18+45e12+18e6+36e30+20e18+6e6
=
2 2 2 2 2 4 2 2 2 4
sech (3) sech (2) sech (3)*tanh (3) sech (3)*tanh (3) sech (2)*tanh (2) sech (2)*tanh (2)
- -------- + -------- - ----------------- - ----------------- + ----------------- + -----------------
6 6 6 6 6 6
−6sech2(3)−6tanh2(3)sech2(3)−6tanh4(3)sech2(3)+6tanh4(2)sech2(2)+6tanh2(2)sech2(2)+6sech2(2)
Use the examples entering the upper and lower limits of integration.