Mister Exam

Other calculators


sech^2(x)tanh^5(x)

Integral of sech^2(x)tanh^5(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3                     
  /                     
 |                      
 |      2        5      
 |  sech (x)*tanh (x) dx
 |                      
/                       
2                       
23tanh5(x)sech2(x)dx\int\limits_{2}^{3} \tanh^{5}{\left(x \right)} \operatorname{sech}^{2}{\left(x \right)}\, dx
Integral(sech(x)^2*tanh(x)^5, (x, 2, 3))
The answer (Indefinite) [src]
  /                                                                           
 |                                2          2        2          2        4   
 |     2        5             sech (x)   sech (x)*tanh (x)   sech (x)*tanh (x)
 | sech (x)*tanh (x) dx = C - -------- - ----------------- - -----------------
 |                               6               6                   6        
/                                                                             
tanh6x6{{\tanh ^6x}\over{6}}
The graph
2.003.002.102.202.302.402.502.602.702.802.900.1-0.1
The answer [src]
      2          2          2        2          2        4          2        2          2        4   
  sech (3)   sech (2)   sech (3)*tanh (3)   sech (3)*tanh (3)   sech (2)*tanh (2)   sech (2)*tanh (2)
- -------- + -------- - ----------------- - ----------------- + ----------------- + -----------------
     6          6               6                   6                   6                   6        
6e20+20e12+6e43e24+18e20+45e16+60e12+45e8+18e4+36e30+20e18+6e63e36+18e30+45e24+60e18+45e12+18e6+3{{6\,e^{20}+20\,e^{12}+6\,e^4}\over{3\,e^{24}+18\,e^{20}+45\,e^{16} +60\,e^{12}+45\,e^8+18\,e^4+3}}-{{6\,e^{30}+20\,e^{18}+6\,e^6}\over{ 3\,e^{36}+18\,e^{30}+45\,e^{24}+60\,e^{18}+45\,e^{12}+18\,e^6+3}}
=
=
      2          2          2        2          2        4          2        2          2        4   
  sech (3)   sech (2)   sech (3)*tanh (3)   sech (3)*tanh (3)   sech (2)*tanh (2)   sech (2)*tanh (2)
- -------- + -------- - ----------------- - ----------------- + ----------------- + -----------------
     6          6               6                   6                   6                   6        
sech2(3)6tanh2(3)sech2(3)6tanh4(3)sech2(3)6+tanh4(2)sech2(2)6+tanh2(2)sech2(2)6+sech2(2)6- \frac{\operatorname{sech}^{2}{\left(3 \right)}}{6} - \frac{\tanh^{2}{\left(3 \right)} \operatorname{sech}^{2}{\left(3 \right)}}{6} - \frac{\tanh^{4}{\left(3 \right)} \operatorname{sech}^{2}{\left(3 \right)}}{6} + \frac{\tanh^{4}{\left(2 \right)} \operatorname{sech}^{2}{\left(2 \right)}}{6} + \frac{\tanh^{2}{\left(2 \right)} \operatorname{sech}^{2}{\left(2 \right)}}{6} + \frac{\operatorname{sech}^{2}{\left(2 \right)}}{6}
Numerical answer [src]
0.0280039096630232
0.0280039096630232
The graph
Integral of sech^2(x)tanh^5(x) dx

    Use the examples entering the upper and lower limits of integration.