1 / | | 4 4 | sec (x)*tan (x) dx | / 0
Integral(sec(x)^4*tan(x)^4, (x, 0, 1))
Rewrite the integrand:
There are multiple ways to do this integral.
Let .
Then let and substitute :
Integrate term-by-term:
The integral of is when :
The integral of is when :
The result is:
Now substitute back in:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The result is:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The result is:
Add the constant of integration:
The answer is:
/ | 5 7 | 4 4 tan (x) tan (x) | sec (x)*tan (x) dx = C + ------- + ------- | 5 7 /
8*sin(1) sin(1) sin(1) 2*sin(1)
- ---------- + --------- + ---------- + ---------
5 7 3 35*cos(1)
35*cos (1) 7*cos (1) 35*cos (1)
=
8*sin(1) sin(1) sin(1) 2*sin(1)
- ---------- + --------- + ---------- + ---------
5 7 3 35*cos(1)
35*cos (1) 7*cos (1) 35*cos (1)
-8*sin(1)/(35*cos(1)^5) + sin(1)/(7*cos(1)^7) + sin(1)/(35*cos(1)^3) + 2*sin(1)/(35*cos(1))
Use the examples entering the upper and lower limits of integration.