Mister Exam

Other calculators

Integral of sec^4xtan^4x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     4       4      
 |  sec (x)*tan (x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \tan^{4}{\left(x \right)} \sec^{4}{\left(x \right)}\, dx$$
Integral(sec(x)^4*tan(x)^4, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of is when :

        1. The integral of is when :

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          
 |                             5         7   
 |    4       4             tan (x)   tan (x)
 | sec (x)*tan (x) dx = C + ------- + -------
 |                             5         7   
/                                            
$$\int \tan^{4}{\left(x \right)} \sec^{4}{\left(x \right)}\, dx = C + \frac{\tan^{7}{\left(x \right)}}{7} + \frac{\tan^{5}{\left(x \right)}}{5}$$
The graph
The answer [src]
   8*sin(1)      sin(1)      sin(1)      2*sin(1)
- ---------- + --------- + ---------- + ---------
        5           7            3      35*cos(1)
  35*cos (1)   7*cos (1)   35*cos (1)            
$$- \frac{8 \sin{\left(1 \right)}}{35 \cos^{5}{\left(1 \right)}} + \frac{2 \sin{\left(1 \right)}}{35 \cos{\left(1 \right)}} + \frac{\sin{\left(1 \right)}}{35 \cos^{3}{\left(1 \right)}} + \frac{\sin{\left(1 \right)}}{7 \cos^{7}{\left(1 \right)}}$$
=
=
   8*sin(1)      sin(1)      sin(1)      2*sin(1)
- ---------- + --------- + ---------- + ---------
        5           7            3      35*cos(1)
  35*cos (1)   7*cos (1)   35*cos (1)            
$$- \frac{8 \sin{\left(1 \right)}}{35 \cos^{5}{\left(1 \right)}} + \frac{2 \sin{\left(1 \right)}}{35 \cos{\left(1 \right)}} + \frac{\sin{\left(1 \right)}}{35 \cos^{3}{\left(1 \right)}} + \frac{\sin{\left(1 \right)}}{7 \cos^{7}{\left(1 \right)}}$$
-8*sin(1)/(35*cos(1)^5) + sin(1)/(7*cos(1)^7) + sin(1)/(35*cos(1)^3) + 2*sin(1)/(35*cos(1))
Numerical answer [src]
5.00730361210706
5.00730361210706

    Use the examples entering the upper and lower limits of integration.