Mister Exam

Other calculators


e^(2*x)/2

Integral of e^(2*x)/2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1        
  /        
 |         
 |   2*x   
 |  E      
 |  ---- dx
 |   2     
 |         
/          
0          
01e2x2dx\int\limits_{0}^{1} \frac{e^{2 x}}{2}\, dx
Integral(E^(2*x)/2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    e2x2dx=e2xdx2\int \frac{e^{2 x}}{2}\, dx = \frac{\int e^{2 x}\, dx}{2}

    1. Let u=2xu = 2 x.

      Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

      eu2du\int \frac{e^{u}}{2}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        False\text{False}

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu2\frac{e^{u}}{2}

      Now substitute uu back in:

      e2x2\frac{e^{2 x}}{2}

    So, the result is: e2x4\frac{e^{2 x}}{4}

  2. Add the constant of integration:

    e2x4+constant\frac{e^{2 x}}{4}+ \mathrm{constant}


The answer is:

e2x4+constant\frac{e^{2 x}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                  
 |                   
 |  2*x           2*x
 | E             e   
 | ---- dx = C + ----
 |  2             4  
 |                   
/                    
e2x2dx=C+e2x4\int \frac{e^{2 x}}{2}\, dx = C + \frac{e^{2 x}}{4}
The graph
0.001.000.100.200.300.400.500.600.700.800.9005
The answer [src]
       2
  1   e 
- - + --
  4   4 
14+e24- \frac{1}{4} + \frac{e^{2}}{4}
=
=
       2
  1   e 
- - + --
  4   4 
14+e24- \frac{1}{4} + \frac{e^{2}}{4}
-1/4 + exp(2)/4
Numerical answer [src]
1.59726402473266
1.59726402473266
The graph
Integral of e^(2*x)/2 dx

    Use the examples entering the upper and lower limits of integration.