Integral of e^(2*x)/2 dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫2e2xdx=2∫e2xdx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2x
So, the result is: 4e2x
-
Add the constant of integration:
4e2x+constant
The answer is:
4e2x+constant
The answer (Indefinite)
[src]
/
|
| 2*x 2*x
| E e
| ---- dx = C + ----
| 2 4
|
/
∫2e2xdx=C+4e2x
The graph
−41+4e2
=
−41+4e2
Use the examples entering the upper and lower limits of integration.