Integral of ((pi-x)/2)*cos(nx) dx
The solution
The answer (Indefinite)
[src]
/ 2
| x
| -- for n = 0
| 2
|
|/-cos(n*x)
<|---------- for n != 0
|< n
|| // x for n = 0\ // x for n = 0\
|\ 0 otherwise || | || |
/ |----------------------- otherwise pi*|
πx−2n2nxsin(nx)+cos(nx)
/pi*sin(pi*n)
|------------ for And(n > -oo, n < oo, n != 0)
| n
<
| 2
| pi otherwise
\
=
/pi*sin(pi*n)
|------------ for And(n > -oo, n < oo, n != 0)
| n
<
| 2
| pi otherwise
\
{nπsin(πn)π2forn>−∞∧n<∞∧n=0otherwise
Use the examples entering the upper and lower limits of integration.