Mister Exam

Integral of ctg(2x-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  7                
  /                
 |                 
 |  cot(2*x - 1) dx
 |                 
/                  
5                  
57cot(2x1)dx\int\limits_{5}^{7} \cot{\left(2 x - 1 \right)}\, dx
Detail solution
  1. Rewrite the integrand:

    cot(2x1)=cos(2x1)sin(2x1)\cot{\left(2 x - 1 \right)} = \frac{\cos{\left(2 x - 1 \right)}}{\sin{\left(2 x - 1 \right)}}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=sin(2x1)u = \sin{\left(2 x - 1 \right)}.

      Then let du=2cos(2x1)dxdu = 2 \cos{\left(2 x - 1 \right)} dx and substitute du2\frac{du}{2}:

      14udu\int \frac{1}{4 u}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        12udu=1udu2\int \frac{1}{2 u}\, du = \frac{\int \frac{1}{u}\, du}{2}

        1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

        So, the result is: log(u)2\frac{\log{\left(u \right)}}{2}

      Now substitute uu back in:

      log(sin(2x1))2\frac{\log{\left(\sin{\left(2 x - 1 \right)} \right)}}{2}

    Method #2

    1. Let u=2x1u = 2 x - 1.

      Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

      cos(u)4sin(u)du\int \frac{\cos{\left(u \right)}}{4 \sin{\left(u \right)}}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)2sin(u)du=cos(u)sin(u)du2\int \frac{\cos{\left(u \right)}}{2 \sin{\left(u \right)}}\, du = \frac{\int \frac{\cos{\left(u \right)}}{\sin{\left(u \right)}}\, du}{2}

        1. Let u=sin(u)u = \sin{\left(u \right)}.

          Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(sin(u))\log{\left(\sin{\left(u \right)} \right)}

        So, the result is: log(sin(u))2\frac{\log{\left(\sin{\left(u \right)} \right)}}{2}

      Now substitute uu back in:

      log(sin(2x1))2\frac{\log{\left(\sin{\left(2 x - 1 \right)} \right)}}{2}

  3. Now simplify:

    log(sin(2x1))2\frac{\log{\left(\sin{\left(2 x - 1 \right)} \right)}}{2}

  4. Add the constant of integration:

    log(sin(2x1))2+constant\frac{\log{\left(\sin{\left(2 x - 1 \right)} \right)}}{2}+ \mathrm{constant}


The answer is:

log(sin(2x1))2+constant\frac{\log{\left(\sin{\left(2 x - 1 \right)} \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                       
 |                       log(sin(2*x - 1))
 | cot(2*x - 1) dx = C + -----------------
 |                               2        
/                                         
logsin(2x1)2{{\log \sin \left(2\,x-1\right)}\over{2}}
The graph
5.07.05.25.45.65.86.06.26.46.66.8-2000020000
The answer [src]
                                 /       2    \      /       2   \       
log(tan(13))   log(-tan(9))   log\1 + tan (13)/   log\1 + tan (9)/   pi*I
------------ - ------------ - ----------------- + ---------------- - ----
     2              2                 4                  4            2  
logsin13logsin92{{\log \sin 13-\log \sin 9}\over{2}}
=
=
                                 /       2    \      /       2   \       
log(tan(13))   log(-tan(9))   log\1 + tan (13)/   log\1 + tan (9)/   pi*I
------------ - ------------ - ----------------- + ---------------- - ----
     2              2                 4                  4            2  
log(tan(13))2log(tan2(13)+1)4+log(tan2(9)+1)4log(tan(9))2iπ2\frac{\log{\left(\tan{\left(13 \right)} \right)}}{2} - \frac{\log{\left(\tan^{2}{\left(13 \right)} + 1 \right)}}{4} + \frac{\log{\left(\tan^{2}{\left(9 \right)} + 1 \right)}}{4} - \frac{\log{\left(- \tan{\left(9 \right)} \right)}}{2} - \frac{i \pi}{2}
Numerical answer [src]
-2.42618972318683
-2.42618972318683
The graph
Integral of ctg(2x-1) dx

    Use the examples entering the upper and lower limits of integration.