Integral of (pi-x/2)*cos(n*x) dx
The solution
The answer (Indefinite)
[src]
/ 2
| x
| -- for n = 0
| 2
|
|/-cos(n*x)
<|---------- for n != 0
|< n
|| // x for n = 0\
|\ 0 otherwise || |
/ |----------------------- otherwise x*|
∫(−2x+π)cos(nx)dx=C−2x({xnsin(nx)forn=0otherwise)+π({xnsin(nx)forn=0otherwise)+2⎩⎨⎧2x2n{−ncos(nx)0forn=0otherwiseforn=0otherwise
/ /pi*n\ /pi*n\
| cos|----| 5*pi*sin|----|
|cos(pi*n) \ 3 / pi*sin(pi*n) \ 3 /
|--------- - --------- - ------------ + -------------- for And(n > -oo, n < oo, n != 0)
| 2 2 2*n 6*n
< 2*n 2*n
|
| 2
| -4*pi
| ------ otherwise
\ 9
{6n5πsin(3πn)−2nπsin(πn)−2n2cos(3πn)+2n2cos(πn)−94π2forn>−∞∧n<∞∧n=0otherwise
=
/ /pi*n\ /pi*n\
| cos|----| 5*pi*sin|----|
|cos(pi*n) \ 3 / pi*sin(pi*n) \ 3 /
|--------- - --------- - ------------ + -------------- for And(n > -oo, n < oo, n != 0)
| 2 2 2*n 6*n
< 2*n 2*n
|
| 2
| -4*pi
| ------ otherwise
\ 9
{6n5πsin(3πn)−2nπsin(πn)−2n2cos(3πn)+2n2cos(πn)−94π2forn>−∞∧n<∞∧n=0otherwise
Piecewise((cos(pi*n)/(2*n^2) - cos(pi*n/3)/(2*n^2) - pi*sin(pi*n)/(2*n) + 5*pi*sin(pi*n/3)/(6*n), (n > -oo)∧(n < oo)∧(Ne(n, 0))), (-4*pi^2/9, True))
Use the examples entering the upper and lower limits of integration.