Mister Exam

Other calculators


(1+x)/(1+x^2)

Integral of (1+x)/(1+x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  1 + x    
 |  ------ dx
 |       2   
 |  1 + x    
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{x + 1}{x^{2} + 1}\, dx$$
Integral((1 + x)/(1 + x^2), (x, 0, 1))
Detail solution
We have the integral:
  /           
 |            
 |   1 + x    
 | 1*------ dx
 |        2   
 |   1 + x    
 |            
/             
Rewrite the integrand
         /  1*2*x + 0   \                    
         |--------------|                    
         |   2          |                    
1 + x    \1*x  + 0*x + 1/           1        
------ = ---------------- + -----------------
     2          2             /        2    \
1 + x                       1*\(-x + 0)  + 1/
or
  /             
 |              
 |   1 + x      
 | 1*------ dx  
 |        2    =
 |   1 + x      
 |              
/               
  
  /                                       
 |                                        
 |   1*2*x + 0                            
 | -------------- dx                      
 |    2                                   
 | 1*x  + 0*x + 1        /                
 |                      |                 
/                       |       1         
-------------------- +  | ------------- dx
         2              |         2       
                        | (-x + 0)  + 1   
                        |                 
                       /                  
In the integral
  /                 
 |                  
 |   1*2*x + 0      
 | -------------- dx
 |    2             
 | 1*x  + 0*x + 1   
 |                  
/                   
--------------------
         2          
do replacement
     2
u = x 
then
the integral =
  /                     
 |                      
 |   1                  
 | ----- du             
 | 1 + u                
 |                      
/             log(1 + u)
----------- = ----------
     2            2     
do backward replacement
  /                               
 |                                
 |   1*2*x + 0                    
 | -------------- dx              
 |    2                           
 | 1*x  + 0*x + 1                 
 |                        /     2\
/                      log\1 + x /
-------------------- = -----------
         2                  2     
In the integral
  /                
 |                 
 |       1         
 | ------------- dx
 |         2       
 | (-x + 0)  + 1   
 |                 
/                  
do replacement
v = -x
then
the integral =
  /                   
 |                    
 |   1                
 | ------ dv = atan(v)
 |      2             
 | 1 + v              
 |                    
/                     
do backward replacement
  /                          
 |                           
 |       1                   
 | ------------- dx = atan(x)
 |         2                 
 | (-x + 0)  + 1             
 |                           
/                            
Solution is:
       /     2\          
    log\1 + x /          
C + ----------- + atan(x)
         2               
The answer (Indefinite) [src]
  /                                     
 |                    /     2\          
 | 1 + x           log\1 + x /          
 | ------ dx = C + ----------- + atan(x)
 |      2               2               
 | 1 + x                                
 |                                      
/                                       
$$\int \frac{x + 1}{x^{2} + 1}\, dx = C + \frac{\log{\left(x^{2} + 1 \right)}}{2} + \operatorname{atan}{\left(x \right)}$$
The graph
The answer [src]
log(2)   pi
------ + --
  2      4 
$$\frac{\log{\left(2 \right)}}{2} + \frac{\pi}{4}$$
=
=
log(2)   pi
------ + --
  2      4 
$$\frac{\log{\left(2 \right)}}{2} + \frac{\pi}{4}$$
Numerical answer [src]
1.13197175367742
1.13197175367742
The graph
Integral of (1+x)/(1+x^2) dx

    Use the examples entering the upper and lower limits of integration.