1 / | | 1 + x | ------ dx | 2 | 1 + x | / 0
Integral((1 + x)/(1 + x^2), (x, 0, 1))
/ | | 1 + x | 1*------ dx | 2 | 1 + x | /
/ 1*2*x + 0 \ |--------------| | 2 | 1 + x \1*x + 0*x + 1/ 1 ------ = ---------------- + ----------------- 2 2 / 2 \ 1 + x 1*\(-x + 0) + 1/
/ | | 1 + x | 1*------ dx | 2 = | 1 + x | /
/ | | 1*2*x + 0 | -------------- dx | 2 | 1*x + 0*x + 1 / | | / | 1 -------------------- + | ------------- dx 2 | 2 | (-x + 0) + 1 | /
/ | | 1*2*x + 0 | -------------- dx | 2 | 1*x + 0*x + 1 | / -------------------- 2
2 u = x
/ | | 1 | ----- du | 1 + u | / log(1 + u) ----------- = ---------- 2 2
/ | | 1*2*x + 0 | -------------- dx | 2 | 1*x + 0*x + 1 | / 2\ / log\1 + x / -------------------- = ----------- 2 2
/ | | 1 | ------------- dx | 2 | (-x + 0) + 1 | /
v = -x
/ | | 1 | ------ dv = atan(v) | 2 | 1 + v | /
/ | | 1 | ------------- dx = atan(x) | 2 | (-x + 0) + 1 | /
/ 2\ log\1 + x / C + ----------- + atan(x) 2
/ | / 2\ | 1 + x log\1 + x / | ------ dx = C + ----------- + atan(x) | 2 2 | 1 + x | /
log(2) pi ------ + -- 2 4
=
log(2) pi ------ + -- 2 4
Use the examples entering the upper and lower limits of integration.