Mister Exam

Other calculators


(1-x)/(1+x^2)

Integral of (1-x)/(1+x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  1 - x    
 |  ------ dx
 |       2   
 |  1 + x    
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{1 - x}{x^{2} + 1}\, dx$$
Integral((1 - x)/(1 + x^2), (x, 0, 1))
Detail solution
We have the integral:
  /         
 |          
 | 1 - x    
 | ------ dx
 |      2   
 | 1 + x    
 |          
/           
Rewrite the integrand
           /    2*x     \                
           |------------|                
           | 2          |                
1 - x      \x  + 0*x + 1/         1      
------ = - -------------- + -------------
     2           2            /    2    \
1 + x                       1*\(-x)  + 1/
or
  /           
 |            
 | 1 - x      
 | ------ dx  
 |      2    =
 | 1 + x      
 |            
/             
  
    /                                 
   |                                  
   |     2*x                          
   | ------------ dx                  
   |  2                               
   | x  + 0*x + 1        /            
   |                    |             
  /                     |     1       
- ------------------ +  | --------- dx
          2             |     2       
                        | (-x)  + 1   
                        |             
                       /              
In the integral
   /                
  |                 
  |     2*x         
- | ------------ dx 
  |  2              
  | x  + 0*x + 1    
  |                 
 /                  
--------------------
         2          
do replacement
     2
u = x 
then
the integral =
   /                        
  |                         
  |   1                     
- | ----- du                
  | 1 + u                   
  |                         
 /              -log(1 + u) 
------------- = ------------
      2              2      
do backward replacement
   /                                
  |                                 
  |     2*x                         
- | ------------ dx                 
  |  2                              
  | x  + 0*x + 1                    
  |                        /     2\ 
 /                     -log\1 + x / 
-------------------- = -------------
         2                   2      
In the integral
  /            
 |             
 |     1       
 | --------- dx
 |     2       
 | (-x)  + 1   
 |             
/              
do replacement
v = -x
then
the integral =
  /                   
 |                    
 |   1                
 | ------ dv = atan(v)
 |      2             
 | 1 + v              
 |                    
/                     
do backward replacement
  /                      
 |                       
 |     1                 
 | --------- dx = atan(x)
 |     2                 
 | (-x)  + 1             
 |                       
/                        
Solution is:
       /     2\          
    log\1 + x /          
C - ----------- + atan(x)
         2               
The answer (Indefinite) [src]
  /                                     
 |                    /     2\          
 | 1 - x           log\1 + x /          
 | ------ dx = C - ----------- + atan(x)
 |      2               2               
 | 1 + x                                
 |                                      
/                                       
$$\int \frac{1 - x}{x^{2} + 1}\, dx = C - \frac{\log{\left(x^{2} + 1 \right)}}{2} + \operatorname{atan}{\left(x \right)}$$
The graph
The answer [src]
  log(2)   pi
- ------ + --
    2      4 
$$- \frac{\log{\left(2 \right)}}{2} + \frac{\pi}{4}$$
=
=
  log(2)   pi
- ------ + --
    2      4 
$$- \frac{\log{\left(2 \right)}}{2} + \frac{\pi}{4}$$
-log(2)/2 + pi/4
Numerical answer [src]
0.438824573117476
0.438824573117476
The graph
Integral of (1-x)/(1+x^2) dx

    Use the examples entering the upper and lower limits of integration.