1 / | | 1 + log(x - 1) | -------------- dx | x - 1 | / -1
Integral((1 + log(x - 1))/(x - 1), (x, -1, 1))
There are multiple ways to do this integral.
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
Now substitute back in:
Now substitute back in:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | 2 | 1 + log(x - 1) (1 + log(x - 1)) | -------------- dx = C + ----------------- | x - 1 2 | /
2
(pi*I + log(2))
oo - ---------------- - pi*I
2
=
2
(pi*I + log(2))
oo - ---------------- - pi*I
2
oo - (pi*i + log(2))^2/2 - pi*i
(897.312398743146 - 138.514234126527j)
(897.312398743146 - 138.514234126527j)
Use the examples entering the upper and lower limits of integration.