Mister Exam

Other calculators

Integral of (1+ln(x-1))/(x-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  1 + log(x - 1)   
 |  -------------- dx
 |      x - 1        
 |                   
/                    
-1                   
$$\int\limits_{-1}^{1} \frac{\log{\left(x - 1 \right)} + 1}{x - 1}\, dx$$
Integral((1 + log(x - 1))/(x - 1), (x, -1, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of is when :

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of is when :

                So, the result is:

              Now substitute back in:

            So, the result is:

          Now substitute back in:

        Now substitute back in:

      1. Let .

        Then let and substitute :

        1. The integral of is .

        Now substitute back in:

      The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                         2
 | 1 + log(x - 1)          (1 + log(x - 1)) 
 | -------------- dx = C + -----------------
 |     x - 1                       2        
 |                                          
/                                           
$$\int \frac{\log{\left(x - 1 \right)} + 1}{x - 1}\, dx = C + \frac{\left(\log{\left(x - 1 \right)} + 1\right)^{2}}{2}$$
The answer [src]
                    2       
     (pi*I + log(2))        
oo - ---------------- - pi*I
            2               
$$\infty - i \pi - \frac{\left(\log{\left(2 \right)} + i \pi\right)^{2}}{2}$$
=
=
                    2       
     (pi*I + log(2))        
oo - ---------------- - pi*I
            2               
$$\infty - i \pi - \frac{\left(\log{\left(2 \right)} + i \pi\right)^{2}}{2}$$
oo - (pi*i + log(2))^2/2 - pi*i
Numerical answer [src]
(897.312398743146 - 138.514234126527j)
(897.312398743146 - 138.514234126527j)

    Use the examples entering the upper and lower limits of integration.