Integral of (1+ln(x+1))/(x-1) dx
The solution
The answer (Indefinite)
[src]
// / pi*I\ \
|| | (-1 + x)*e | |
|| - polylog|2, --------------| + log(2)*log(-1 + x) for |-1 + x| < 1|
|| \ 2 / |
/ || |
| || / pi*I\ |
| 1 + log(x + 1) || | (-1 + x)*e | / 1 \ 1 |
| -------------- dx = C + |< - polylog|2, --------------| - log(2)*log|------| for -------- < 1| + log(x - 1)
| x - 1 || \ 2 / \-1 + x/ |-1 + x| |
| || |
/ || / pi*I\ |
|| | (-1 + x)*e | __0, 2 /1, 1 | \ __2, 0 / 1, 1 | \ |
||- polylog|2, --------------| + log(2)*/__ | | -1 + x| - log(2)*/__ | | -1 + x| otherwise |
|| \ 2 / \_|2, 2 \ 0, 0 | / \_|2, 2 \0, 0 | / |
\\ /
∫x−1log(x+1)+1dx=C+⎩⎨⎧log(2)log(x−1)−Li2(2(x−1)eiπ)−log(2)log(x−11)−Li2(2(x−1)eiπ)−G2,22,0(0,01,1x−1)log(2)+G2,20,2(1,10,0x−1)log(2)−Li2(2(x−1)eiπ)for∣x−1∣<1for∣x−1∣1<1otherwise+log(x−1)
−∞−iπ−iπlog(2)
=
−∞−iπ−iπlog(2)
Use the examples entering the upper and lower limits of integration.