Integral of (1+cos(x))/x^2 dx
The solution
Detail solution
-
Rewrite the integrand:
x2cos(x)+1=x2cos(x)+x21
-
Integrate term-by-term:
-
Don't know the steps in finding this integral.
But the integral is
−Si(x)−xcos(x)
-
The integral of xn is n+1xn+1 when n=−1:
∫x21dx=−x1
The result is: −Si(x)−xcos(x)−x1
-
Now simplify:
−xxSi(x)+cos(x)+1
-
Add the constant of integration:
−xxSi(x)+cos(x)+1+constant
The answer is:
−xxSi(x)+cos(x)+1+constant
The answer (Indefinite)
[src]
/
|
| 1 + cos(x) 1 cos(x)
| ---------- dx = C - - - Si(x) - ------
| 2 x x
| x
|
/
−x1−2iΓ(−1,ix)−iΓ(−1,−ix)
The graph
4 10*cos(3/10)
- - Si(1/2) - 2*cos(1/2) + ------------ + Si(3/10)
3 3
−63iΓ(−1,2i)−3iΓ(−1,103i)+3iΓ(−1,−103i)−3iΓ(−1,−2i)−8
=
4 10*cos(3/10)
- - Si(1/2) - 2*cos(1/2) + ------------ + Si(3/10)
3 3
−2cos(21)−Si(21)+Si(103)+34+310cos(103)
Use the examples entering the upper and lower limits of integration.