Mister Exam

Other calculators:


(1+cos(x))/x^2

Limit of the function (1+cos(x))/x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /1 + cos(x)\
 lim |----------|
x->0+|     2    |
     \    x     /
limx0+(cos(x)+1x2)\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)} + 1}{x^{2}}\right)
Limit((1 + cos(x))/x^2, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010050000
Rapid solution [src]
oo
\infty
One‐sided limits [src]
     /1 + cos(x)\
 lim |----------|
x->0+|     2    |
     \    x     /
limx0+(cos(x)+1x2)\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)} + 1}{x^{2}}\right)
oo
\infty
= 45601.5000018274
     /1 + cos(x)\
 lim |----------|
x->0-|     2    |
     \    x     /
limx0(cos(x)+1x2)\lim_{x \to 0^-}\left(\frac{\cos{\left(x \right)} + 1}{x^{2}}\right)
oo
\infty
= 45601.5000018274
= 45601.5000018274
Other limits x→0, -oo, +oo, 1
limx0(cos(x)+1x2)=\lim_{x \to 0^-}\left(\frac{\cos{\left(x \right)} + 1}{x^{2}}\right) = \infty
More at x→0 from the left
limx0+(cos(x)+1x2)=\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)} + 1}{x^{2}}\right) = \infty
limx(cos(x)+1x2)=0\lim_{x \to \infty}\left(\frac{\cos{\left(x \right)} + 1}{x^{2}}\right) = 0
More at x→oo
limx1(cos(x)+1x2)=cos(1)+1\lim_{x \to 1^-}\left(\frac{\cos{\left(x \right)} + 1}{x^{2}}\right) = \cos{\left(1 \right)} + 1
More at x→1 from the left
limx1+(cos(x)+1x2)=cos(1)+1\lim_{x \to 1^+}\left(\frac{\cos{\left(x \right)} + 1}{x^{2}}\right) = \cos{\left(1 \right)} + 1
More at x→1 from the right
limx(cos(x)+1x2)=0\lim_{x \to -\infty}\left(\frac{\cos{\left(x \right)} + 1}{x^{2}}\right) = 0
More at x→-oo
Numerical answer [src]
45601.5000018274
45601.5000018274
The graph
Limit of the function (1+cos(x))/x^2