Mister Exam

Other calculators

Integral of √(1-tanx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  p                  
  -                  
  6                  
  /                  
 |                   
 |    ____________   
 |  \/ 1 - tan(x)  dx
 |                   
/                    
0                    
$$\int\limits_{0}^{\frac{p}{6}} \sqrt{1 - \tan{\left(x \right)}}\, dx$$
Integral(sqrt(1 - tan(x)), (x, 0, p/6))
The answer [src]
  p                  
  -                  
  6                  
  /                  
 |                   
 |    ____________   
 |  \/ 1 - tan(x)  dx
 |                   
/                    
0                    
$$\int\limits_{0}^{\frac{p}{6}} \sqrt{1 - \tan{\left(x \right)}}\, dx$$
=
=
  p                  
  -                  
  6                  
  /                  
 |                   
 |    ____________   
 |  \/ 1 - tan(x)  dx
 |                   
/                    
0                    
$$\int\limits_{0}^{\frac{p}{6}} \sqrt{1 - \tan{\left(x \right)}}\, dx$$
Integral(sqrt(1 - tan(x)), (x, 0, p/6))

    Use the examples entering the upper and lower limits of integration.