Mister Exam

Other calculators

Integral of 1-1/x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo            
  /            
 |             
 |  /    1 \   
 |  |1 - --| dx
 |  |     2|   
 |  \    x /   
 |             
/              
1              
$$\int\limits_{1}^{\infty} \left(1 - \frac{1}{x^{2}}\right)\, dx$$
Integral(1 - 1/x^2, (x, 1, oo))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

    1. The integral of a constant times a function is the constant times the integral of the function:

        PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArccothRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArctanhRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False)], context=1/(x**2), symbol=x)

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                 
 |                  
 | /    1 \         
 | |1 - --| dx = nan
 | |     2|         
 | \    x /         
 |                  
/                   
$$\int \left(1 - \frac{1}{x^{2}}\right)\, dx = \text{NaN}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo

    Use the examples entering the upper and lower limits of integration.