Mister Exam

Other calculators

Integral of 1/(xln(x-1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       1         
 |  ------------ dx
 |  x*log(x - 1)   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{1}{x \log{\left(x - 1 \right)}}\, dx$$
Integral(1/(x*log(x - 1)), (x, 0, 1))
The answer (Indefinite) [src]
  /                        /                
 |                        |                 
 |      1                 |       1         
 | ------------ dx = C +  | ------------- dx
 | x*log(x - 1)           | x*log(-1 + x)   
 |                        |                 
/                        /                  
$$\int \frac{1}{x \log{\left(x - 1 \right)}}\, dx = C + \int \frac{1}{x \log{\left(x - 1 \right)}}\, dx$$
The answer [src]
  1                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |  x*log(-1 + x)   
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{1}{x \log{\left(x - 1 \right)}}\, dx$$
=
=
  1                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |  x*log(-1 + x)   
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{1}{x \log{\left(x - 1 \right)}}\, dx$$
Integral(1/(x*log(-1 + x)), (x, 0, 1))
Numerical answer [src]
(-0.135181422730739 - 13.9861340195063j)
(-0.135181422730739 - 13.9861340195063j)

    Use the examples entering the upper and lower limits of integration.