Mister Exam

Other calculators

Integral of 1/(x(lnx-1)^4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  E                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |                4   
 |  x*(log(x) - 1)    
 |                    
/                     
1                     
$$\int\limits_{1}^{e} \frac{1}{x \left(\log{\left(x \right)} - 1\right)^{4}}\, dx$$
Integral(1/(x*(log(x) - 1)^4), (x, 1, E))
The answer (Indefinite) [src]
  /                                                              
 |                                                               
 |        1                                   1                  
 | --------------- dx = C - -------------------------------------
 |               4                    2           3              
 | x*(log(x) - 1)           -3 - 9*log (x) + 3*log (x) + 9*log(x)
 |                                                               
/                                                                
$$\int \frac{1}{x \left(\log{\left(x \right)} - 1\right)^{4}}\, dx = C - \frac{1}{3 \log{\left(x \right)}^{3} - 9 \log{\left(x \right)}^{2} + 9 \log{\left(x \right)} - 3}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
2.21053039601401e+48
2.21053039601401e+48

    Use the examples entering the upper and lower limits of integration.