Mister Exam

Other calculators

Integral of 1/x*(ln(x-1)^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo               
  /               
 |                
 |     2          
 |  log (x - 1)   
 |  ----------- dx
 |       x        
 |                
/                 
 2                
e                 
$$\int\limits_{e^{2}}^{\infty} \frac{\log{\left(x - 1 \right)}^{2}}{x}\, dx$$
Integral(log(x - 1)^2/x, (x, exp(2), oo))
The answer (Indefinite) [src]
  /                       /               
 |                       |                
 |    2                  |    2           
 | log (x - 1)           | log (-1 + x)   
 | ----------- dx = C +  | ------------ dx
 |      x                |      x         
 |                       |                
/                       /                 
$$\int \frac{\log{\left(x - 1 \right)}^{2}}{x}\, dx = C + \int \frac{\log{\left(x - 1 \right)}^{2}}{x}\, dx$$
The answer [src]
 oo                
  /                
 |                 
 |     2           
 |  log (-1 + x)   
 |  ------------ dx
 |       x         
 |                 
/                  
 2                 
e                  
$$\int\limits_{e^{2}}^{\infty} \frac{\log{\left(x - 1 \right)}^{2}}{x}\, dx$$
=
=
 oo                
  /                
 |                 
 |     2           
 |  log (-1 + x)   
 |  ------------ dx
 |       x         
 |                 
/                  
 2                 
e                  
$$\int\limits_{e^{2}}^{\infty} \frac{\log{\left(x - 1 \right)}^{2}}{x}\, dx$$
Integral(log(-1 + x)^2/x, (x, exp(2), oo))

    Use the examples entering the upper and lower limits of integration.