Mister Exam

Other calculators


1/(x^2+6x+12)

Integral of 1/(x^2+6x+12) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |   2              
 |  x  + 6*x + 12   
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{1}{\left(x^{2} + 6 x\right) + 12}\, dx$$
Integral(1/(x^2 + 6*x + 12), (x, 0, 1))
Detail solution
We have the integral:
  /                
 |                 
 |       1         
 | ------------- dx
 |  2              
 | x  + 6*x + 12   
 |                 
/                  
Rewrite the integrand
      1                      1              
------------- = ----------------------------
 2                /                   2    \
x  + 6*x + 12     |/   ___           \     |
                  ||-\/ 3         ___|     |
                3*||-------*x - \/ 3 |  + 1|
                  \\   3             /     /
or
  /                  
 |                   
 |       1           
 | ------------- dx  
 |  2               =
 | x  + 6*x + 12     
 |                   
/                    
  
  /                           
 |                            
 |            1               
 | ------------------------ dx
 |                    2       
 | /   ___           \        
 | |-\/ 3         ___|        
 | |-------*x - \/ 3 |  + 1   
 | \   3             /        
 |                            
/                             
------------------------------
              3               
In the integral
  /                           
 |                            
 |            1               
 | ------------------------ dx
 |                    2       
 | /   ___           \        
 | |-\/ 3         ___|        
 | |-------*x - \/ 3 |  + 1   
 | \   3             /        
 |                            
/                             
------------------------------
              3               
do replacement
                  ___
        ___   x*\/ 3 
v = - \/ 3  - -------
                 3   
then
the integral =
  /                   
 |                    
 |   1                
 | ------ dv          
 |      2             
 | 1 + v              
 |                    
/              atan(v)
------------ = -------
     3            3   
do backward replacement
  /                                                         
 |                                                          
 |            1                                             
 | ------------------------ dx                              
 |                    2                                     
 | /   ___           \                                      
 | |-\/ 3         ___|                                      
 | |-------*x - \/ 3 |  + 1                /            ___\
 | \   3             /             ___     |  ___   x*\/ 3 |
 |                               \/ 3 *atan|\/ 3  + -------|
/                                          \           3   /
------------------------------ = ---------------------------
              3                               3             
Solution is:
              /            ___\
      ___     |  ___   x*\/ 3 |
    \/ 3 *atan|\/ 3  + -------|
              \           3   /
C + ---------------------------
                 3             
The answer (Indefinite) [src]
                                    /  ___        \
  /                         ___     |\/ 3 *(3 + x)|
 |                        \/ 3 *atan|-------------|
 |       1                          \      3      /
 | ------------- dx = C + -------------------------
 |  2                                 3            
 | x  + 6*x + 12                                   
 |                                                 
/                                                  
$$\int \frac{1}{\left(x^{2} + 6 x\right) + 12}\, dx = C + \frac{\sqrt{3} \operatorname{atan}{\left(\frac{\sqrt{3} \left(x + 3\right)}{3} \right)}}{3}$$
The graph
The answer [src]
                       /    ___\
               ___     |4*\/ 3 |
       ___   \/ 3 *atan|-------|
  pi*\/ 3              \   3   /
- -------- + -------------------
     9                3         
$$- \frac{\sqrt{3} \pi}{9} + \frac{\sqrt{3} \operatorname{atan}{\left(\frac{4 \sqrt{3}}{3} \right)}}{3}$$
=
=
                       /    ___\
               ___     |4*\/ 3 |
       ___   \/ 3 *atan|-------|
  pi*\/ 3              \   3   /
- -------- + -------------------
     9                3         
$$- \frac{\sqrt{3} \pi}{9} + \frac{\sqrt{3} \operatorname{atan}{\left(\frac{4 \sqrt{3}}{3} \right)}}{3}$$
-pi*sqrt(3)/9 + sqrt(3)*atan(4*sqrt(3)/3)/3
Numerical answer [src]
0.06637271839737
0.06637271839737
The graph
Integral of 1/(x^2+6x+12) dx

    Use the examples entering the upper and lower limits of integration.