Mister Exam

Other calculators


(2-x^4)/(1+x^2)

Integral of (2-x^4)/(1+x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |       4   
 |  2 - x    
 |  ------ dx
 |       2   
 |  1 + x    
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{2 - x^{4}}{x^{2} + 1}\, dx$$
Integral((2 - x^4)/(1 + x^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                
 |                                 
 |      4               3          
 | 2 - x               x           
 | ------ dx = C + x - -- + atan(x)
 |      2              3           
 | 1 + x                           
 |                                 
/                                  
$$\int \frac{2 - x^{4}}{x^{2} + 1}\, dx = C - \frac{x^{3}}{3} + x + \operatorname{atan}{\left(x \right)}$$
The graph
The answer [src]
2   pi
- + --
3   4 
$$\frac{2}{3} + \frac{\pi}{4}$$
=
=
2   pi
- + --
3   4 
$$\frac{2}{3} + \frac{\pi}{4}$$
2/3 + pi/4
Numerical answer [src]
1.45206483006412
1.45206483006412
The graph
Integral of (2-x^4)/(1+x^2) dx

    Use the examples entering the upper and lower limits of integration.