Mister Exam

Other calculators


1/(x^3-1)

Integral of 1/(x^3-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |    1      
 |  ------ dx
 |   3       
 |  x  - 1   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{1}{x^{3} - 1}\, dx$$
Integral(1/(x^3 - 1), (x, 0, 1))
The answer (Indefinite) [src]
                                                             /    ___          \
  /                                                  ___     |2*\/ 3 *(1/2 + x)|
 |                    /         2\                 \/ 3 *atan|-----------------|
 |   1             log\1 + x + x /   log(-1 + x)             \        3        /
 | ------ dx = C - --------------- + ----------- - -----------------------------
 |  3                     6               3                      3              
 | x  - 1                                                                       
 |                                                                              
/                                                                               
$$\int \frac{1}{x^{3} - 1}\, dx = C + \frac{\log{\left(x - 1 \right)}}{3} - \frac{\log{\left(x^{2} + x + 1 \right)}}{6} - \frac{\sqrt{3} \operatorname{atan}{\left(\frac{2 \sqrt{3} \left(x + \frac{1}{2}\right)}{3} \right)}}{3}$$
The graph
The answer [src]
      pi*I
-oo - ----
       3  
$$-\infty - \frac{i \pi}{3}$$
=
=
      pi*I
-oo - ----
       3  
$$-\infty - \frac{i \pi}{3}$$
-oo - pi*i/3
Numerical answer [src]
-15.1823875375555
-15.1823875375555
The graph
Integral of 1/(x^3-1) dx

    Use the examples entering the upper and lower limits of integration.