Mister Exam

Other calculators


1/(x^3-1)

Derivative of 1/(x^3-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1   
------
 3    
x  - 1
$$\frac{1}{x^{3} - 1}$$
1/(x^3 - 1)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
      2  
  -3*x   
---------
        2
/ 3    \ 
\x  - 1/ 
$$- \frac{3 x^{2}}{\left(x^{3} - 1\right)^{2}}$$
The second derivative [src]
    /          3 \
    |       3*x  |
6*x*|-1 + -------|
    |           3|
    \     -1 + x /
------------------
             2    
    /      3\     
    \-1 + x /     
$$\frac{6 x \left(\frac{3 x^{3}}{x^{3} - 1} - 1\right)}{\left(x^{3} - 1\right)^{2}}$$
The third derivative [src]
  /           6           3 \
  |       27*x        18*x  |
6*|-1 - ---------- + -------|
  |              2         3|
  |     /      3\    -1 + x |
  \     \-1 + x /           /
-----------------------------
                   2         
          /      3\          
          \-1 + x /          
$$\frac{6 \left(- \frac{27 x^{6}}{\left(x^{3} - 1\right)^{2}} + \frac{18 x^{3}}{x^{3} - 1} - 1\right)}{\left(x^{3} - 1\right)^{2}}$$
The graph
Derivative of 1/(x^3-1)