Mister Exam

Other calculators

Integral of 1/(x^(1/2)-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo             
  /             
 |              
 |      1       
 |  --------- dx
 |    ___       
 |  \/ x  - 1   
 |              
/               
2               
21x1dx\int\limits_{2}^{\infty} \frac{1}{\sqrt{x} - 1}\, dx
Integral(1/(sqrt(x) - 1), (x, 2, oo))
Detail solution
  1. Let u=xu = \sqrt{x}.

    Then let du=dx2xdu = \frac{dx}{2 \sqrt{x}} and substitute 2du2 du:

    2uu1du\int \frac{2 u}{u - 1}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      uu1du=2uu1du\int \frac{u}{u - 1}\, du = 2 \int \frac{u}{u - 1}\, du

      1. Rewrite the integrand:

        uu1=1+1u1\frac{u}{u - 1} = 1 + \frac{1}{u - 1}

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

          1du=u\int 1\, du = u

        1. Let u=u1u = u - 1.

          Then let du=dudu = du and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(u1)\log{\left(u - 1 \right)}

        The result is: u+log(u1)u + \log{\left(u - 1 \right)}

      So, the result is: 2u+2log(u1)2 u + 2 \log{\left(u - 1 \right)}

    Now substitute uu back in:

    2x+2log(x1)2 \sqrt{x} + 2 \log{\left(\sqrt{x} - 1 \right)}

  2. Add the constant of integration:

    2x+2log(x1)+constant2 \sqrt{x} + 2 \log{\left(\sqrt{x} - 1 \right)}+ \mathrm{constant}


The answer is:

2x+2log(x1)+constant2 \sqrt{x} + 2 \log{\left(\sqrt{x} - 1 \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                              
 |                                               
 |     1                  ___        /       ___\
 | --------- dx = C + 2*\/ x  + 2*log\-1 + \/ x /
 |   ___                                         
 | \/ x  - 1                                     
 |                                               
/                                                
1x1dx=C+2x+2log(x1)\int \frac{1}{\sqrt{x} - 1}\, dx = C + 2 \sqrt{x} + 2 \log{\left(\sqrt{x} - 1 \right)}
The graph
2.00002.01002.00102.00202.00302.00402.00502.00602.00702.00802.00900.02.5
The answer [src]
oo
\infty
=
=
oo
\infty
oo

    Use the examples entering the upper and lower limits of integration.