Mister Exam

Other calculators

Integral of 1/(x+y)^2 dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2            
  /            
 |             
 |     1       
 |  -------- dy
 |         2   
 |  (x + y)    
 |             
/              
0              
$$\int\limits_{0}^{2} \frac{1}{\left(x + y\right)^{2}}\, dy$$
Integral(1/((x + y)^2), (y, 0, 2))
The answer (Indefinite) [src]
  /                       
 |                        
 |    1                1  
 | -------- dy = C - -----
 |        2          x + y
 | (x + y)                
 |                        
/                         
$$\int \frac{1}{\left(x + y\right)^{2}}\, dy = C - \frac{1}{x + y}$$
The answer [src]
1     1  
- - -----
x   2 + x
$$- \frac{1}{x + 2} + \frac{1}{x}$$
=
=
1     1  
- - -----
x   2 + x
$$- \frac{1}{x + 2} + \frac{1}{x}$$
1/x - 1/(2 + x)

    Use the examples entering the upper and lower limits of integration.