Mister Exam

Other calculators

Integral of 1/(x+4sqrt(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  9               
  /               
 |                
 |       1        
 |  ----------- dx
 |          ___   
 |  x + 4*\/ x    
 |                
/                 
1                 
$$\int\limits_{1}^{9} \frac{1}{4 \sqrt{x} + x}\, dx$$
Integral(1/(x + 4*sqrt(x)), (x, 1, 9))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of is .

        Now substitute back in:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                     
 |                                      
 |      1                    /      ___\
 | ----------- dx = C + 2*log\4 + \/ x /
 |         ___                          
 | x + 4*\/ x                           
 |                                      
/                                       
$$\int \frac{1}{4 \sqrt{x} + x}\, dx = C + 2 \log{\left(\sqrt{x} + 4 \right)}$$
The graph
The answer [src]
-2*log(5) + 2*log(7)
$$- 2 \log{\left(5 \right)} + 2 \log{\left(7 \right)}$$
=
=
-2*log(5) + 2*log(7)
$$- 2 \log{\left(5 \right)} + 2 \log{\left(7 \right)}$$
-2*log(5) + 2*log(7)
Numerical answer [src]
0.672944473242426
0.672944473242426

    Use the examples entering the upper and lower limits of integration.