Mister Exam

Integral of 1/(x(1-x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |      1       
 |  --------- dx
 |  x*(1 - x)   
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{1}{x \left(1 - x\right)}\, dx$$
Integral(1/(x*(1 - x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                       
 |                                        
 |     1                                  
 | --------- dx = C - log(-1 + x) + log(x)
 | x*(1 - x)                              
 |                                        
/                                         
$$\int \frac{1}{x \left(1 - x\right)}\, dx = C + \log{\left(x \right)} - \log{\left(x - 1 \right)}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
88.1814029202124
88.1814029202124
The graph
Integral of 1/(x(1-x)) dx

    Use the examples entering the upper and lower limits of integration.