Mister Exam

Other calculators

Integral of 1/((x(1-x))^(1/2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |    ___________   
 |  \/ x*(1 - x)    
 |                  
/                   
2                   
$$\int\limits_{2}^{\infty} \frac{1}{\sqrt{x \left(1 - x\right)}}\, dx$$
Integral(1/(sqrt(x*(1 - x))), (x, 2, oo))
The answer [src]
 oo                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |    ___________   
 |  \/ x*(1 - x)    
 |                  
/                   
2                   
$$\int\limits_{2}^{\infty} \frac{1}{\sqrt{x \left(1 - x\right)}}\, dx$$
=
=
 oo                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |    ___________   
 |  \/ x*(1 - x)    
 |                  
/                   
2                   
$$\int\limits_{2}^{\infty} \frac{1}{\sqrt{x \left(1 - x\right)}}\, dx$$
Integral(1/sqrt(x*(1 - x)), (x, 2, oo))

    Use the examples entering the upper and lower limits of integration.