Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
1
---------*(-1 + 2*x)
x*(1 - x)
--------------------
x*(1 - x)
-1 + 2*x -1 + 2*x /1 1 \
2 - -------- - -------- - (-1 + 2*x)*|- + ------|
x -1 + x \x -1 + x/
-------------------------------------------------
2 2
x *(-1 + x)
/1 1 \ /1 1 \
(-1 + 2*x)*|- + ------| (-1 + 2*x)*|- + ------|
8 8 /1 1 1 \ 3*(-1 + 2*x) 3*(-1 + 2*x) \x -1 + x/ \x -1 + x/ 4*(-1 + 2*x)
- - - ------ + 2*(-1 + 2*x)*|-- + --------- + ----------| + ------------ + ------------ + ----------------------- + ----------------------- + ------------
x -1 + x | 2 2 x*(-1 + x)| 2 2 x -1 + x x*(-1 + x)
\x (-1 + x) / x (-1 + x)
----------------------------------------------------------------------------------------------------------------------------------------------------------
2 2
x *(-1 + x)