Mister Exam

Derivative of 1/(x(1-x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    1    
---------
x*(1 - x)
$$\frac{1}{x \left(1 - x\right)}$$
1/(x*(1 - x))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    1               
---------*(-1 + 2*x)
x*(1 - x)           
--------------------
     x*(1 - x)      
$$\frac{\frac{1}{x \left(1 - x\right)} \left(2 x - 1\right)}{x \left(1 - x\right)}$$
The second derivative [src]
    -1 + 2*x   -1 + 2*x              /1     1   \
2 - -------- - -------- - (-1 + 2*x)*|- + ------|
       x        -1 + x               \x   -1 + x/
-------------------------------------------------
                    2         2                  
                   x *(-1 + x)                   
$$\frac{- \left(2 x - 1\right) \left(\frac{1}{x - 1} + \frac{1}{x}\right) + 2 - \frac{2 x - 1}{x - 1} - \frac{2 x - 1}{x}}{x^{2} \left(x - 1\right)^{2}}$$
The third derivative [src]
                                                                                                     /1     1   \              /1     1   \               
                                                                                          (-1 + 2*x)*|- + ------|   (-1 + 2*x)*|- + ------|               
  8     8                   /1        1           1     \   3*(-1 + 2*x)   3*(-1 + 2*x)              \x   -1 + x/              \x   -1 + x/   4*(-1 + 2*x)
- - - ------ + 2*(-1 + 2*x)*|-- + --------- + ----------| + ------------ + ------------ + ----------------------- + ----------------------- + ------------
  x   -1 + x                | 2           2   x*(-1 + x)|         2                 2                x                       -1 + x            x*(-1 + x) 
                            \x    (-1 + x)              /        x          (-1 + x)                                                                      
----------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                        2         2                                                                       
                                                                       x *(-1 + x)                                                                        
$$\frac{2 \left(2 x - 1\right) \left(\frac{1}{\left(x - 1\right)^{2}} + \frac{1}{x \left(x - 1\right)} + \frac{1}{x^{2}}\right) + \frac{\left(2 x - 1\right) \left(\frac{1}{x - 1} + \frac{1}{x}\right)}{x - 1} - \frac{8}{x - 1} + \frac{3 \left(2 x - 1\right)}{\left(x - 1\right)^{2}} + \frac{\left(2 x - 1\right) \left(\frac{1}{x - 1} + \frac{1}{x}\right)}{x} - \frac{8}{x} + \frac{4 \left(2 x - 1\right)}{x \left(x - 1\right)} + \frac{3 \left(2 x - 1\right)}{x^{2}}}{x^{2} \left(x - 1\right)^{2}}$$