Mister Exam

Other calculators

Integral of 1/(x*lnx-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                
  /                
 |                 
 |       1         
 |  ------------ dx
 |  x*log(x) - 1   
 |                 
/                  
 2                 
e                  
$$\int\limits_{e^{2}}^{\infty} \frac{1}{x \log{\left(x \right)} - 1}\, dx$$
Integral(1/(x*log(x) - 1), (x, exp(2), oo))
The answer (Indefinite) [src]
  /                        /                
 |                        |                 
 |      1                 |       1         
 | ------------ dx = C +  | ------------- dx
 | x*log(x) - 1           | -1 + x*log(x)   
 |                        |                 
/                        /                  
$$\int \frac{1}{x \log{\left(x \right)} - 1}\, dx = C + \int \frac{1}{x \log{\left(x \right)} - 1}\, dx$$
The answer [src]
 oo                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |  -1 + x*log(x)   
 |                  
/                   
 2                  
e                   
$$\int\limits_{e^{2}}^{\infty} \frac{1}{x \log{\left(x \right)} - 1}\, dx$$
=
=
 oo                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |  -1 + x*log(x)   
 |                  
/                   
 2                  
e                   
$$\int\limits_{e^{2}}^{\infty} \frac{1}{x \log{\left(x \right)} - 1}\, dx$$
Integral(1/(-1 + x*log(x)), (x, exp(2), oo))

    Use the examples entering the upper and lower limits of integration.