Mister Exam

Other calculators

Integral of 1/(x-y) dl

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |    1     
 |  ----- dy
 |  x - y   
 |          
/           
0           
011xydy\int\limits_{0}^{1} \frac{1}{x - y}\, dy
Integral(1/(x - y), (y, 0, 1))
Detail solution
  1. Let u=xyu = x - y.

    Then let du=dydu = - dy and substitute du- du:

    (1u)du\int \left(- \frac{1}{u}\right)\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      1udu=1udu\int \frac{1}{u}\, du = - \int \frac{1}{u}\, du

      1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

      So, the result is: log(u)- \log{\left(u \right)}

    Now substitute uu back in:

    log(xy)- \log{\left(x - y \right)}

  2. Add the constant of integration:

    log(xy)+constant- \log{\left(x - y \right)}+ \mathrm{constant}


The answer is:

log(xy)+constant- \log{\left(x - y \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                         
 |                          
 |   1                      
 | ----- dy = C - log(x - y)
 | x - y                    
 |                          
/                           
1xydy=Clog(xy)\int \frac{1}{x - y}\, dy = C - \log{\left(x - y \right)}
The answer [src]
-log(1 - x) + log(-x)
log(x)log(1x)\log{\left(- x \right)} - \log{\left(1 - x \right)}
=
=
-log(1 - x) + log(-x)
log(x)log(1x)\log{\left(- x \right)} - \log{\left(1 - x \right)}
-log(1 - x) + log(-x)

    Use the examples entering the upper and lower limits of integration.