Mister Exam

Other calculators

Integral of (1/x-y)dy dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |  /1    \   
 |  |- - y| dy
 |  \x    /   
 |            
/             
0             
01(y+1x)dy\int\limits_{0}^{1} \left(- y + \frac{1}{x}\right)\, dy
Integral(1/x - y, (y, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (y)dy=ydy\int \left(- y\right)\, dy = - \int y\, dy

      1. The integral of yny^{n} is yn+1n+1\frac{y^{n + 1}}{n + 1} when n1n \neq -1:

        ydy=y22\int y\, dy = \frac{y^{2}}{2}

      So, the result is: y22- \frac{y^{2}}{2}

    1. The integral of a constant is the constant times the variable of integration:

      1xdy=yx\int \frac{1}{x}\, dy = \frac{y}{x}

    The result is: y22+yx- \frac{y^{2}}{2} + \frac{y}{x}

  2. Add the constant of integration:

    y22+yx+constant- \frac{y^{2}}{2} + \frac{y}{x}+ \mathrm{constant}


The answer is:

y22+yx+constant- \frac{y^{2}}{2} + \frac{y}{x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                       
 |                   2    
 | /1    \          y    y
 | |- - y| dy = C - -- + -
 | \x    /          2    x
 |                        
/                         
(y+1x)dy=Cy22+yx\int \left(- y + \frac{1}{x}\right)\, dy = C - \frac{y^{2}}{2} + \frac{y}{x}
The answer [src]
  1   1
- - + -
  2   x
12+1x- \frac{1}{2} + \frac{1}{x}
=
=
  1   1
- - + -
  2   x
12+1x- \frac{1}{2} + \frac{1}{x}
-1/2 + 1/x

    Use the examples entering the upper and lower limits of integration.