Mister Exam

Other calculators

Integral of 1/(xlog^(2)x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo             
  /             
 |              
 |      1       
 |  --------- dx
 |       2      
 |  x*log (x)   
 |              
/               
b               
$$\int\limits_{b}^{\infty} \frac{1}{x \log{\left(x \right)}^{2}}\, dx$$
Integral(1/(x*log(x)^2), (x, b, oo))
The answer (Indefinite) [src]
  /                         
 |                          
 |     1                1   
 | --------- dx = C - ------
 |      2             log(x)
 | x*log (x)                
 |                          
/                           
$$\int \frac{1}{x \log{\left(x \right)}^{2}}\, dx = C - \frac{1}{\log{\left(x \right)}}$$
The answer [src]
  1   
------
log(b)
$$\frac{1}{\log{\left(b \right)}}$$
=
=
  1   
------
log(b)
$$\frac{1}{\log{\left(b \right)}}$$
1/log(b)

    Use the examples entering the upper and lower limits of integration.