Mister Exam

Other calculators

Derivative of 1/(2x^2-5x+7)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      1       
--------------
   2          
2*x  - 5*x + 7
$$\frac{1}{\left(2 x^{2} - 5 x\right) + 7}$$
1/(2*x^2 - 5*x + 7)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     5 - 4*x     
-----------------
                2
/   2          \ 
\2*x  - 5*x + 7/ 
$$\frac{5 - 4 x}{\left(\left(2 x^{2} - 5 x\right) + 7\right)^{2}}$$
The second derivative [src]
  /                2  \
  |      (-5 + 4*x)   |
2*|-2 + --------------|
  |                  2|
  \     7 - 5*x + 2*x /
-----------------------
                   2   
   /             2\    
   \7 - 5*x + 2*x /    
$$\frac{2 \left(\frac{\left(4 x - 5\right)^{2}}{2 x^{2} - 5 x + 7} - 2\right)}{\left(2 x^{2} - 5 x + 7\right)^{2}}$$
The third derivative [src]
             /               2  \
             |     (-5 + 4*x)   |
6*(-5 + 4*x)*|4 - --------------|
             |                 2|
             \    7 - 5*x + 2*x /
---------------------------------
                        3        
        /             2\         
        \7 - 5*x + 2*x /         
$$\frac{6 \left(4 x - 5\right) \left(- \frac{\left(4 x - 5\right)^{2}}{2 x^{2} - 5 x + 7} + 4\right)}{\left(2 x^{2} - 5 x + 7\right)^{3}}$$