1 / | | 1 | 1*--------- dh | _______ | \/ 2*g*h | / 0
Integral(1/sqrt(2*g*h), (h, 0, 1))
PiecewiseRule(subfunctions=[(URule(u_var=_u, u_func=sqrt(2)*sqrt(g*h), constant=None, substep=ConstantTimesRule(constant=1/g, other=_u/sqrt(_u**2), substep=ConstantTimesRule(constant=1/2, other=2*_u/sqrt(_u**2), substep=URule(u_var=_u, u_func=_u**2, constant=None, substep=PowerRule(base=_u, exp=-1/2, context=1/sqrt(_u), symbol=_u), context=2*_u/sqrt(_u**2), symbol=_u), context=_u/sqrt(_u**2), symbol=_u), context=_u/(g*sqrt(_u**2)), symbol=_u), context=1/sqrt(2*g*h), symbol=h), Ne(2*g, 0)), (ConstantRule(constant=zoo, context=zoo, symbol=h), True)], context=1/sqrt(2*g*h), symbol=h)
Now simplify:
Add the constant of integration:
The answer is:
/ // ___ _____ \ | ||\/ 2 *\/ g*h | | 1 ||------------- for g != 0| | 1*--------- dh = C + |< g | | _______ || | | \/ 2*g*h || zoo*h otherwise | | \\ / /
Use the examples entering the upper and lower limits of integration.