Mister Exam

Other calculators

Integral of 1/sqrt(3*x+4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0               
  /               
 |                
 |       1        
 |  ----------- dx
 |    _________   
 |  \/ 3*x + 4    
 |                
/                 
-1                
$$\int\limits_{-1}^{0} \frac{1}{\sqrt{3 x + 4}}\, dx$$
Integral(1/(sqrt(3*x + 4)), (x, -1, 0))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of a constant is the constant times the variable of integration:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                          _________
 |      1               2*\/ 3*x + 4 
 | ----------- dx = C + -------------
 |   _________                3      
 | \/ 3*x + 4                        
 |                                   
/                                    
$$\int \frac{1}{\sqrt{3 x + 4}}\, dx = C + \frac{2 \sqrt{3 x + 4}}{3}$$
The graph
The answer [src]
2/3
$$\frac{2}{3}$$
=
=
2/3
$$\frac{2}{3}$$
2/3
Numerical answer [src]
0.666666666666667
0.666666666666667

    Use the examples entering the upper and lower limits of integration.