Mister Exam

Other calculators

Integral of -1/(sqrt(3x+4)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0               
  /               
 |                
 |      -1        
 |  ----------- dx
 |    _________   
 |  \/ 3*x + 4    
 |                
/                 
-1                
10(13x+4)dx\int\limits_{-1}^{0} \left(- \frac{1}{\sqrt{3 x + 4}}\right)\, dx
Integral(-1/sqrt(3*x + 4), (x, -1, 0))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    (13x+4)dx=13x+4dx\int \left(- \frac{1}{\sqrt{3 x + 4}}\right)\, dx = - \int \frac{1}{\sqrt{3 x + 4}}\, dx

    1. Let u=3x+4u = \sqrt{3 x + 4}.

      Then let du=3dx23x+4du = \frac{3 dx}{2 \sqrt{3 x + 4}} and substitute 2du3\frac{2 du}{3}:

      23du\int \frac{2}{3}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        False\text{False}

        1. The integral of a constant is the constant times the variable of integration:

          1du=u\int 1\, du = u

        So, the result is: 2u3\frac{2 u}{3}

      Now substitute uu back in:

      23x+43\frac{2 \sqrt{3 x + 4}}{3}

    So, the result is: 23x+43- \frac{2 \sqrt{3 x + 4}}{3}

  2. Now simplify:

    23x+43- \frac{2 \sqrt{3 x + 4}}{3}

  3. Add the constant of integration:

    23x+43+constant- \frac{2 \sqrt{3 x + 4}}{3}+ \mathrm{constant}


The answer is:

23x+43+constant- \frac{2 \sqrt{3 x + 4}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                          _________
 |     -1               2*\/ 3*x + 4 
 | ----------- dx = C - -------------
 |   _________                3      
 | \/ 3*x + 4                        
 |                                   
/                                    
(13x+4)dx=C23x+43\int \left(- \frac{1}{\sqrt{3 x + 4}}\right)\, dx = C - \frac{2 \sqrt{3 x + 4}}{3}
The graph
-1.00-0.90-0.80-0.70-0.60-0.50-0.40-0.30-0.20-0.100.00-2.00.0
The answer [src]
-2/3
23- \frac{2}{3}
=
=
-2/3
23- \frac{2}{3}
-2/3
Numerical answer [src]
-0.666666666666667
-0.666666666666667

    Use the examples entering the upper and lower limits of integration.