Mister Exam

Other calculators

Integral of -1/(sqrt(3x+4)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0               
  /               
 |                
 |      -1        
 |  ----------- dx
 |    _________   
 |  \/ 3*x + 4    
 |                
/                 
-1                
$$\int\limits_{-1}^{0} \left(- \frac{1}{\sqrt{3 x + 4}}\right)\, dx$$
Integral(-1/sqrt(3*x + 4), (x, -1, 0))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of a constant is the constant times the variable of integration:

        So, the result is:

      Now substitute back in:

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                          _________
 |     -1               2*\/ 3*x + 4 
 | ----------- dx = C - -------------
 |   _________                3      
 | \/ 3*x + 4                        
 |                                   
/                                    
$$\int \left(- \frac{1}{\sqrt{3 x + 4}}\right)\, dx = C - \frac{2 \sqrt{3 x + 4}}{3}$$
The graph
The answer [src]
-2/3
$$- \frac{2}{3}$$
=
=
-2/3
$$- \frac{2}{3}$$
-2/3
Numerical answer [src]
-0.666666666666667
-0.666666666666667

    Use the examples entering the upper and lower limits of integration.