Mister Exam

Other calculators

Integral of 1/sqrt3(x+4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                            
  /                            
 |                             
 |             1               
 |  ------------------------ dx
 |         0.333333333333333   
 |  (x + 4)                    
 |                             
/                              
0                              
$$\int\limits_{0}^{0} \frac{1}{\left(x + 4\right)^{0.333333333333333}}\, dx$$
Integral(1/((x + 4)^0.333333333333333), (x, 0, 0))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                              
 |                                                               
 |            1                                 0.666666666666667
 | ------------------------ dx = C + 1.5*(x + 4)                 
 |        0.333333333333333                                      
 | (x + 4)                                                       
 |                                                               
/                                                                
$$\int \frac{1}{\left(x + 4\right)^{0.333333333333333}}\, dx = C + 1.5 \left(x + 4\right)^{0.666666666666667}$$
The graph
The answer [src]
0
$$0$$
=
=
0
$$0$$
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.