Mister Exam

Other calculators


1/(sqrt(e^(6*x)-4))

Integral of 1/(sqrt(e^(6*x)-4)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |          1         
 |  1*------------- dx
 |       __________   
 |      /  6*x        
 |    \/  e    - 4    
 |                    
/                     
0                     
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{\sqrt{e^{6 x} - 4}}\, dx$$
Integral(1/sqrt(E^(6*x) - 1*4), (x, 0, 1))
The answer (Indefinite) [src]
$${{\arctan \left({{\sqrt{e^{6\,x}-4}}\over{2}}\right)}\over{6}}$$
The graph
The answer [src]
    /   _________\                 
    |  /       6 |          /  ___\
    |\/  -4 + e  |          |\/ 3 |
atan|------------|   I*atanh|-----|
    \     2      /          \  2  /
------------------ - --------------
        6                  6       
$${{\arctan \left({{\sqrt{e^6-4}}\over{2}}\right)-i\,{\rm atanh}\; \left({{\sqrt{3}}\over{2}}\right)}\over{6}}$$
=
=
    /   _________\                 
    |  /       6 |          /  ___\
    |\/  -4 + e  |          |\/ 3 |
atan|------------|   I*atanh|-----|
    \     2      /          \  2  /
------------------ - --------------
        6                  6       
$$\frac{\operatorname{atan}{\left(\frac{\sqrt{-4 + e^{6}}}{2} \right)}}{6} - \frac{i \operatorname{atanh}{\left(\frac{\sqrt{3}}{2} \right)}}{6}$$
Numerical answer [src]
(0.21812576599571 - 0.265385439732854j)
(0.21812576599571 - 0.265385439732854j)
The graph
Integral of 1/(sqrt(e^(6*x)-4)) dx

    Use the examples entering the upper and lower limits of integration.