Mister Exam

Other calculators

Integral of 1/sin^4x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ___          
 \/ 2           
 -----          
   2            
   /            
  |             
  |      1      
  |   ------- dx
  |      4      
  |   sin (x)   
  |             
 /              
 1              
$$\int\limits_{1}^{\frac{\sqrt{2}}{2}} \frac{1}{\sin^{4}{\left(x \right)}}\, dx$$
Integral(1/(sin(x)^4), (x, 1, sqrt(2)/2))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of a constant is the constant times the variable of integration:

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                              3   
 |    1                      cot (x)
 | ------- dx = C - cot(x) - -------
 |    4                         3   
 | sin (x)                          
 |                                  
/                                   
$$\int \frac{1}{\sin^{4}{\left(x \right)}}\, dx = C - \frac{\cot^{3}{\left(x \right)}}{3} - \cot{\left(x \right)}$$
The graph
The answer [src]
       /  ___\        /  ___\                        
       |\/ 2 |        |\/ 2 |                        
  2*cos|-----|     cos|-----|                        
       \  2  /        \  2  /      cos(1)    2*cos(1)
- ------------ - ------------- + --------- + --------
       /  ___\         /  ___\        3      3*sin(1)
       |\/ 2 |        3|\/ 2 |   3*sin (1)           
  3*sin|-----|   3*sin |-----|                       
       \  2  /         \  2  /                       
$$- \frac{\cos{\left(\frac{\sqrt{2}}{2} \right)}}{3 \sin^{3}{\left(\frac{\sqrt{2}}{2} \right)}} - \frac{2 \cos{\left(\frac{\sqrt{2}}{2} \right)}}{3 \sin{\left(\frac{\sqrt{2}}{2} \right)}} + \frac{\cos{\left(1 \right)}}{3 \sin^{3}{\left(1 \right)}} + \frac{2 \cos{\left(1 \right)}}{3 \sin{\left(1 \right)}}$$
=
=
       /  ___\        /  ___\                        
       |\/ 2 |        |\/ 2 |                        
  2*cos|-----|     cos|-----|                        
       \  2  /        \  2  /      cos(1)    2*cos(1)
- ------------ - ------------- + --------- + --------
       /  ___\         /  ___\        3      3*sin(1)
       |\/ 2 |        3|\/ 2 |   3*sin (1)           
  3*sin|-----|   3*sin |-----|                       
       \  2  /         \  2  /                       
$$- \frac{\cos{\left(\frac{\sqrt{2}}{2} \right)}}{3 \sin^{3}{\left(\frac{\sqrt{2}}{2} \right)}} - \frac{2 \cos{\left(\frac{\sqrt{2}}{2} \right)}}{3 \sin{\left(\frac{\sqrt{2}}{2} \right)}} + \frac{\cos{\left(1 \right)}}{3 \sin^{3}{\left(1 \right)}} + \frac{2 \cos{\left(1 \right)}}{3 \sin{\left(1 \right)}}$$
-2*cos(sqrt(2)/2)/(3*sin(sqrt(2)/2)) - cos(sqrt(2)/2)/(3*sin(sqrt(2)/2)^3) + cos(1)/(3*sin(1)^3) + 2*cos(1)/(3*sin(1))
Numerical answer [src]
-0.974154827019863
-0.974154827019863

    Use the examples entering the upper and lower limits of integration.