___ \/ 2 ----- 2 / | | 1 | ------- dx | 4 | sin (x) | / 1
Integral(1/(sin(x)^4), (x, 1, sqrt(2)/2))
Rewrite the integrand:
There are multiple ways to do this integral.
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Now substitute back in:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
The result is:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
The result is:
Add the constant of integration:
The answer is:
/ | 3 | 1 cot (x) | ------- dx = C - cot(x) - ------- | 4 3 | sin (x) | /
/ ___\ / ___\ |\/ 2 | |\/ 2 | 2*cos|-----| cos|-----| \ 2 / \ 2 / cos(1) 2*cos(1) - ------------ - ------------- + --------- + -------- / ___\ / ___\ 3 3*sin(1) |\/ 2 | 3|\/ 2 | 3*sin (1) 3*sin|-----| 3*sin |-----| \ 2 / \ 2 /
=
/ ___\ / ___\ |\/ 2 | |\/ 2 | 2*cos|-----| cos|-----| \ 2 / \ 2 / cos(1) 2*cos(1) - ------------ - ------------- + --------- + -------- / ___\ / ___\ 3 3*sin(1) |\/ 2 | 3|\/ 2 | 3*sin (1) 3*sin|-----| 3*sin |-----| \ 2 / \ 2 /
-2*cos(sqrt(2)/2)/(3*sin(sqrt(2)/2)) - cos(sqrt(2)/2)/(3*sin(sqrt(2)/2)^3) + cos(1)/(3*sin(1)^3) + 2*cos(1)/(3*sin(1))
Use the examples entering the upper and lower limits of integration.