1
1*-------
4
sin (x)
d / 1 \ --|1*-------| dx| 4 | \ sin (x)/
Apply the quotient rule, which is:
and .
To find :
The derivative of the constant is zero.
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
Now plug in to the quotient rule:
The answer is:
-4*cos(x)
--------------
4
sin(x)*sin (x)
/ 2 \
| 5*cos (x)|
4*|1 + ---------|
| 2 |
\ sin (x) /
-----------------
4
sin (x)
/ 2 \
| 15*cos (x)|
-8*|7 + ----------|*cos(x)
| 2 |
\ sin (x) /
--------------------------
5
sin (x)