Mister Exam

Derivative of 1/sin^4x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     1   
1*-------
     4   
  sin (x)
$$1 \cdot \frac{1}{\sin^{4}{\left(x \right)}}$$
d /     1   \
--|1*-------|
dx|     4   |
  \  sin (x)/
$$\frac{d}{d x} 1 \cdot \frac{1}{\sin^{4}{\left(x \right)}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of the constant is zero.

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
  -4*cos(x)   
--------------
          4   
sin(x)*sin (x)
$$- \frac{4 \cos{\left(x \right)}}{\sin{\left(x \right)} \sin^{4}{\left(x \right)}}$$
The second derivative [src]
  /         2   \
  |    5*cos (x)|
4*|1 + ---------|
  |        2    |
  \     sin (x) /
-----------------
        4        
     sin (x)     
$$\frac{4 \cdot \left(1 + \frac{5 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right)}{\sin^{4}{\left(x \right)}}$$
The third derivative [src]
   /          2   \       
   |    15*cos (x)|       
-8*|7 + ----------|*cos(x)
   |        2     |       
   \     sin (x)  /       
--------------------------
            5             
         sin (x)          
$$- \frac{8 \cdot \left(7 + \frac{15 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}{\sin^{5}{\left(x \right)}}$$
The graph
Derivative of 1/sin^4x