1 1*------- 4 sin (x)
d / 1 \ --|1*-------| dx| 4 | \ sin (x)/
Apply the quotient rule, which is:
and .
To find :
The derivative of the constant is zero.
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
Now plug in to the quotient rule:
The answer is:
-4*cos(x) -------------- 4 sin(x)*sin (x)
/ 2 \ | 5*cos (x)| 4*|1 + ---------| | 2 | \ sin (x) / ----------------- 4 sin (x)
/ 2 \ | 15*cos (x)| -8*|7 + ----------|*cos(x) | 2 | \ sin (x) / -------------------------- 5 sin (x)