Mister Exam

Other calculators

Integral of 1/(√(secx))(cotx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |    cot(x)     
 |  ---------- dx
 |    ________   
 |  \/ sec(x)    
 |               
/                
0                
01cot(x)sec(x)dx\int\limits_{0}^{1} \frac{\cot{\left(x \right)}}{\sqrt{\sec{\left(x \right)}}}\, dx
Integral(cot(x)/sqrt(sec(x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                      /             
 |                      |              
 |   cot(x)             |   cot(x)     
 | ---------- dx = C +  | ---------- dx
 |   ________           |   ________   
 | \/ sec(x)            | \/ sec(x)    
 |                      |              
/                      /               
cot(x)sec(x)dx=C+cot(x)sec(x)dx\int \frac{\cot{\left(x \right)}}{\sqrt{\sec{\left(x \right)}}}\, dx = C + \int \frac{\cot{\left(x \right)}}{\sqrt{\sec{\left(x \right)}}}\, dx
The answer [src]
  1              
  /              
 |               
 |    cot(x)     
 |  ---------- dx
 |    ________   
 |  \/ sec(x)    
 |               
/                
0                
01cot(x)sec(x)dx\int\limits_{0}^{1} \frac{\cot{\left(x \right)}}{\sqrt{\sec{\left(x \right)}}}\, dx
=
=
  1              
  /              
 |               
 |    cot(x)     
 |  ---------- dx
 |    ________   
 |  \/ sec(x)    
 |               
/                
0                
01cot(x)sec(x)dx\int\limits_{0}^{1} \frac{\cot{\left(x \right)}}{\sqrt{\sec{\left(x \right)}}}\, dx
Integral(cot(x)/sqrt(sec(x)), (x, 0, 1))
Numerical answer [src]
43.8121734933518
43.8121734933518

    Use the examples entering the upper and lower limits of integration.