Mister Exam

Other calculators

Integral of 1/1+acos(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*pi                
   /                 
  |                  
  |  (1 + acos(x)) dx
  |                  
 /                   
 0                   
$$\int\limits_{0}^{2 \pi} \left(\operatorname{acos}{\left(x \right)} + 1\right)\, dx$$
Integral(1 + acos(x), (x, 0, 2*pi))
Detail solution
  1. Integrate term-by-term:

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of a constant is the constant times the variable of integration:

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                              ________            
 |                              /      2             
 | (1 + acos(x)) dx = C + x - \/  1 - x   + x*acos(x)
 |                                                   
/                                                    
$$\int \left(\operatorname{acos}{\left(x \right)} + 1\right)\, dx = C + x \operatorname{acos}{\left(x \right)} + x - \sqrt{1 - x^{2}}$$
The graph
The answer [src]
       ___________                         
      /         2                          
1 - \/  1 - 4*pi   + 2*pi + 2*pi*acos(2*pi)
$$1 + 2 \pi - \sqrt{1 - 4 \pi^{2}} + 2 \pi \operatorname{acos}{\left(2 \pi \right)}$$
=
=
       ___________                         
      /         2                          
1 - \/  1 - 4*pi   + 2*pi + 2*pi*acos(2*pi)
$$1 + 2 \pi - \sqrt{1 - 4 \pi^{2}} + 2 \pi \operatorname{acos}{\left(2 \pi \right)}$$
1 - sqrt(1 - 4*pi^2) + 2*pi + 2*pi*acos(2*pi)
Numerical answer [src]
(7.28402542760913 + 9.66052250292926j)
(7.28402542760913 + 9.66052250292926j)

    Use the examples entering the upper and lower limits of integration.