2*pi / | | (1 + acos(x)) dx | / 0
Integral(1 + acos(x), (x, 0, 2*pi))
Integrate term-by-term:
Use integration by parts:
Let and let .
Then .
To find :
The integral of a constant is the constant times the variable of integration:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Add the constant of integration:
The answer is:
/ ________ | / 2 | (1 + acos(x)) dx = C + x - \/ 1 - x + x*acos(x) | /
___________
/ 2
1 - \/ 1 - 4*pi + 2*pi + 2*pi*acos(2*pi)
=
___________
/ 2
1 - \/ 1 - 4*pi + 2*pi + 2*pi*acos(2*pi)
1 - sqrt(1 - 4*pi^2) + 2*pi + 2*pi*acos(2*pi)
(7.28402542760913 + 9.66052250292926j)
(7.28402542760913 + 9.66052250292926j)
Use the examples entering the upper and lower limits of integration.