Mister Exam

Other calculators

Integral of 1/1+a*cos(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                  
  /                  
 |                   
 |  (1 + a*cos(x)) dx
 |                   
/                    
0                    
0π(acos(x)+1)dx\int\limits_{0}^{\pi} \left(a \cos{\left(x \right)} + 1\right)\, dx
Integral(1 + a*cos(x), (x, 0, pi))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      acos(x)dx=acos(x)dx\int a \cos{\left(x \right)}\, dx = a \int \cos{\left(x \right)}\, dx

      1. The integral of cosine is sine:

        cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

      So, the result is: asin(x)a \sin{\left(x \right)}

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    The result is: asin(x)+xa \sin{\left(x \right)} + x

  2. Add the constant of integration:

    asin(x)+x+constanta \sin{\left(x \right)} + x+ \mathrm{constant}


The answer is:

asin(x)+x+constanta \sin{\left(x \right)} + x+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                    
 |                                     
 | (1 + a*cos(x)) dx = C + x + a*sin(x)
 |                                     
/                                      
(acos(x)+1)dx=C+asin(x)+x\int \left(a \cos{\left(x \right)} + 1\right)\, dx = C + a \sin{\left(x \right)} + x
The answer [src]
pi
π\pi
=
=
pi
π\pi
pi

    Use the examples entering the upper and lower limits of integration.