Mister Exam

Other calculators


1/(1-x^2)^2

Integral of 1/(1-x^2)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |      1       
 |  --------- dx
 |          2   
 |  /     2\    
 |  \1 - x /    
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{1}{\left(1 - x^{2}\right)^{2}}\, dx$$
Integral(1/((1 - x^2)^2), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is .

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is .

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      The result is:

    Method #2

    1. Rewrite the integrand:

    2. Rewrite the integrand:

    3. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is .

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is .

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Rewrite the integrand:

    3. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is .

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is .

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                    
 |                                                                     
 |     1                  1           1        log(-1 + x)   log(1 + x)
 | --------- dx = C - --------- - ---------- - ----------- + ----------
 |         2          4*(1 + x)   4*(-1 + x)        4            4     
 | /     2\                                                            
 | \1 - x /                                                            
 |                                                                     
/                                                                      
$$\int \frac{1}{\left(1 - x^{2}\right)^{2}}\, dx = C - \frac{\log{\left(x - 1 \right)}}{4} + \frac{\log{\left(x + 1 \right)}}{4} - \frac{1}{4 \left(x + 1\right)} - \frac{1}{4 \left(x - 1\right)}$$
The graph
The answer [src]
     pi*I
oo + ----
      4  
$$\infty + \frac{i \pi}{4}$$
=
=
     pi*I
oo + ----
      4  
$$\infty + \frac{i \pi}{4}$$
oo + pi*i/4
Numerical answer [src]
3.45048902814162e+18
3.45048902814162e+18
The graph
Integral of 1/(1-x^2)^2 dx

    Use the examples entering the upper and lower limits of integration.