Integral of 1/(1-x^2)^2 dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
(1−x2)21=4(x+1)1+4(x+1)21−4(x−1)1+4(x−1)21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4(x+1)1dx=4∫x+11dx
-
Let u=x+1.
Then let du=dx and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(x+1)
So, the result is: 4log(x+1)
-
The integral of a constant times a function is the constant times the integral of the function:
∫4(x+1)21dx=4∫(x+1)21dx
-
Let u=x+1.
Then let du=dx and substitute du:
∫u21du
-
The integral of un is n+1un+1 when n=−1:
∫u21du=−u1
Now substitute u back in:
−x+11
So, the result is: −4(x+1)1
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4(x−1)1)dx=−4∫x−11dx
-
Let u=x−1.
Then let du=dx and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(x−1)
So, the result is: −4log(x−1)
-
The integral of a constant times a function is the constant times the integral of the function:
∫4(x−1)21dx=4∫(x−1)21dx
-
Let u=x−1.
Then let du=dx and substitute du:
∫u21du
-
The integral of un is n+1un+1 when n=−1:
∫u21du=−u1
Now substitute u back in:
−x−11
So, the result is: −4(x−1)1
The result is: −4log(x−1)+4log(x+1)−4(x+1)1−4(x−1)1
Method #2
-
Rewrite the integrand:
(1−x2)21=x4−2x2+11
-
Rewrite the integrand:
x4−2x2+11=4(x+1)1+4(x+1)21−4(x−1)1+4(x−1)21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4(x+1)1dx=4∫x+11dx
-
Let u=x+1.
Then let du=dx and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(x+1)
So, the result is: 4log(x+1)
-
The integral of a constant times a function is the constant times the integral of the function:
∫4(x+1)21dx=4∫(x+1)21dx
-
Let u=x+1.
Then let du=dx and substitute du:
∫u21du
-
The integral of un is n+1un+1 when n=−1:
∫u21du=−u1
Now substitute u back in:
−x+11
So, the result is: −4(x+1)1
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4(x−1)1)dx=−4∫x−11dx
-
Let u=x−1.
Then let du=dx and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(x−1)
So, the result is: −4log(x−1)
-
The integral of a constant times a function is the constant times the integral of the function:
∫4(x−1)21dx=4∫(x−1)21dx
-
Let u=x−1.
Then let du=dx and substitute du:
∫u21du
-
The integral of un is n+1un+1 when n=−1:
∫u21du=−u1
Now substitute u back in:
−x−11
So, the result is: −4(x−1)1
The result is: −4log(x−1)+4log(x+1)−4(x+1)1−4(x−1)1
Method #3
-
Rewrite the integrand:
(1−x2)21=x4−2x2+11
-
Rewrite the integrand:
x4−2x2+11=4(x+1)1+4(x+1)21−4(x−1)1+4(x−1)21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4(x+1)1dx=4∫x+11dx
-
Let u=x+1.
Then let du=dx and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(x+1)
So, the result is: 4log(x+1)
-
The integral of a constant times a function is the constant times the integral of the function:
∫4(x+1)21dx=4∫(x+1)21dx
-
Let u=x+1.
Then let du=dx and substitute du:
∫u21du
-
The integral of un is n+1un+1 when n=−1:
∫u21du=−u1
Now substitute u back in:
−x+11
So, the result is: −4(x+1)1
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4(x−1)1)dx=−4∫x−11dx
-
Let u=x−1.
Then let du=dx and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(x−1)
So, the result is: −4log(x−1)
-
The integral of a constant times a function is the constant times the integral of the function:
∫4(x−1)21dx=4∫(x−1)21dx
-
Let u=x−1.
Then let du=dx and substitute du:
∫u21du
-
The integral of un is n+1un+1 when n=−1:
∫u21du=−u1
Now substitute u back in:
−x−11
So, the result is: −4(x−1)1
The result is: −4log(x−1)+4log(x+1)−4(x+1)1−4(x−1)1
-
Now simplify:
4(x−1)(x+1)−2x+(x−1)(x+1)(−log(x−1)+log(x+1))
-
Add the constant of integration:
4(x−1)(x+1)−2x+(x−1)(x+1)(−log(x−1)+log(x+1))+constant
The answer is:
4(x−1)(x+1)−2x+(x−1)(x+1)(−log(x−1)+log(x+1))+constant
The answer (Indefinite)
[src]
/
|
| 1 1 1 log(-1 + x) log(1 + x)
| --------- dx = C - --------- - ---------- - ----------- + ----------
| 2 4*(1 + x) 4*(-1 + x) 4 4
| / 2\
| \1 - x /
|
/
∫(1−x2)21dx=C−4log(x−1)+4log(x+1)−4(x+1)1−4(x−1)1
The graph
∞+4iπ
=
∞+4iπ
Use the examples entering the upper and lower limits of integration.